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Beyond regression
Suppose we say that a regression is terrific for description, perhaps for some
explanation. But we say further that description and explanation is simply not
enough to make any kind of decision. Our critically based realism (yes, we do
make judgments) will not abide it. Sure we have a way to predict outcomes.
But we have a decision to make. Do not our views on outcomes matter? They
certainly do!

We use regression modeling as a descriptive tool for studying how an outcome
can be predicted given some input variables. The prediction is simply an
out-of-sample implication of the plausible consistency of the model, its method
for measurement all part of the set of unobserved data, and the observed data,
itself necessarily incomplete.

A completely different approach is to model a decision outcome as a balancing
of goals or utilities or, better yet, beliefs. Here a belief is a justifiable, perhaps
through our extensive regression analysis, truth. The justifiability of a truth,
something we just is, depends on the consistency of the data with the analyst’s
beliefs, along with the community of analysts and the consumers of their
analysis. The belief itself relates to something believed to be, a real-ity. We
cross a threshold of rationality, of intelligibility, of something beyond mere
observation and sensibility. We act on what we believe to be true.

The values we hold to be true guide us. Following Hildebrand (1953), there are
two distinct and subsisting notions of value. One is the merely satisfying, such
as in an ecstasy of the beauty of a painting, poem, dance, even an analyst’s
model. Still the experience is one of satisfaction only. Consequentialism falls
into this notional pit. Economic rational choice theory would have us order our
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actions according to, essentially, subjective preferences, and actions leading to
consequences. We weigh the consequences against our subjectively determined
preferences, and beliefs. And each of us has these preferences. Others may
agree or disagree with us and our preferences. If they agree they might transact
with us. We both act on mutually acceptable consequences whatever our beliefs
separately. The act might be to transact, exchange, or the act might be to
retain the status quo, business as usual, as we walk away from one another,
perhaps to transact with others and their subjectively wrought preferences.

Then there is the value of what is objectively true. This notion rises above
purely subjective beliefs to the level of a universal reality. And to say there is no
universal reality is to contradict oneself! For you have said there is a universal
reality, even though you named it with the adjective non-universal. Whole
cultures exist to real-ize (there’s that pesky term real again) the particular lived
experience of universals in our day-to-day making of and executing and then
modifying our decisions in communities of persons. Informing such decisions
within the context of the cultural good of value reaching for universal truth is
the rational choice model of inferring trade-offs among decision choices.

Zellner has it!
We can sometimes express our analytical life in the simple terms of doing one
of two things D1, drink from well #1 , or D2, switch to well #2 . Relative to
these two decisions why would we even countenance these alternatives? The
simple reason might be one well is contaminated, the other is not. We might
not know for sure. If we choose and the water is bad, we, or at least some of
us, will be sick, perhaps die eventually. If we choose and the water is good, we
should all be just fine and live out our day.

This table replicates Zellner (1971), with some modifications and changes in
nomenclature.

S1 S2
Do D1 0 L(doD1, S2)
Do D2 L(doD2, S1) 0

In this simple, primitive, table, Dx means decision alternative Dx, and doDx

means act on Dx. The losses incurred when doing, acting on any decision will
be given.

How do we choose? At one level we can rationally, reasonably choose one
expected level of loss over another, given the data, and the states of the
world which might erupt. In our example of water contamination below, the
community will be involved in promoting the greater common good. An aspect
of this involvement is the principled discussion of decision alternatives in the
face of good and/or bad news, uncertainty, and the plausibility of otherwise
uncertain outcomes. Also the community will expend resources or not. What
the community can review, having become aware of the issues and accepting
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we, as a community, must act, is to follow a reasonable formation of decision
alternatives.

Here is one way to provide a comparison between the two alternatives, where
E is our expectation of loss (cost) L. The expected loss of doing doDx, we
observe data y. We work along the columns of our decision matrix.1

E(L | doD1) = p(S1 | y)L(S1, doD1) + p(S2 | y)L(S2, doD1)

Because in our simplistic decision matrix, L(S1, doD1) = 0, we have this
simplification.

E(L | doD1) = p(S2 | y)L(S2, doD1)

Similarly, without any further ado (someone should check this!), we also have
for the doing, this expression (no further puns!).

E(L | doD2) = p(S1 | y)L(S1, doD2)

If we, as a community, believe that, with Polya (1954), Zellner (1971) and
Gelman et al. (2004), a reasonable choice of one decision over another is when
the community’s discernment of expected loss is different between the decisions.
Let’s compare the results of our Bayesian (we did use posterior probabilities
after all!) decision analysis.

We would choose doD1 over doD2 if this condition holds and remembering
we want to minimize the (expected) loss, that is, choose the decision with
the smallest expected loss.

E(L | doD1) < E(L | doD2)

The intuition makes sense if we want to minimize loss when acting, especially
on spotty information. The agove relation is the same as saying that this
condition then holds.

p(S2 | y)L(S2, doD1) < p(S1 | y)L(S1, doD2)

And these expressions, decision rules, are the same as saying something about
the odds.

p(S1 | y)L(S1, doD2)
p(S2 | y)L(S2, doD1) > 1

1This does look a lot like Pearl (2016) and his do− operator)
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Let’s not let the subscripts fool us. In the numerator we have the expected
loss if we were to act on, doD1. In the denominator we have the expected loss
if we were to act on, doD2.

Intuitively reasonable? Mostly, yes, this seems reasonable in the absence of
any other consideration. Here is a motivating example.

Example 1.

Arsenic in Bangladesh

Gelman et al. (2004) examine the problem of making policy for avoiding
arsenic contamination in water wells in Bangladesh. How can we under-
stand the relation between distance between wells, arsenic level, and the
decision to switch? It makes obvious sense that people with higher arsenic
levels would be more likely to switch. The policy decision they model
is a recommendation to switch to another well and / or drill new wells.
The actual health risk is believed to be related to arsenic concentration.
_______________________________________________

To set up a discrete choice model, we specify a value function, which represents
the strength of preference for one decision over the other — in this case, the
preference for switching, D1, as compared to not switching, D2. The value
function can be scaled so that zero no loss from making a decision, while a
positive value represents the loss from making the decision.2

What is new about this analysis is the deliberate sidestepping of a purely
statistical hypothesis of inference. Instead we directly model decisions instead
of hypotheses, confront the decisions with data mediated by a model which the
decision maker believes in, all to yield the plausibility of a range of decision
alternatives. This approach follows and builds on a decades-old multi-action-
multi-state loss model reminiscent of contingency tables, strategy, and games.

Example 2.

Based on Zellner (1971), p. 317 and informed by Gelman et al.
(2004)

It costs resources, financial, human, materials, to build, maintain, test wells
drilled for potable water. We have 10 observations of contamination levels from
a Gaussian population of wells with unknown mean contamination level µ and
standard deviation σ = 1. The mean contamination levels (states of the world)
are S1 = 2.0 and S2 = 1.0, and the prior probabilities of D1 = drink the water
from the wells and D2 = switch to another set of wells we know are probably
not contaminated, are 1/2 each. If the wells are not contaminated, and we

2This model is similar to the latent-data interpretation of logistic regression.
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decided to drink from the wells, there will be no extra cost of drinking water.
If the wells are contaminated, and we decided to switch to other (perhaps
more reliable) wells, we will assume again there will no extra cost of resources.
Otherwise if the wells are not contaminated, and we decided to switch to other
the wells, there will at least be a cost to switch to other sources of potable
water equal to 2 (pick your currency units and scale; millions of Bolivars, for
example). Also, if the wells are contaminated, and we decided not to switch
to other the wells and drink the water, there will be a cost to care for the
sick and dying, as well as search for other sources of potable water equal
to 4 (again pick your currency units and scale; millions of Bolivars, for example).
_______________________________________________

Quite a problem to solve, a puzzle to figure out, but there may be a bit of
a mystery to wrangle over when we exercise our will collectively, or even
individually, to actually drink or switch. Our actions will necessarily precede
the potential outcomes.

What is the common good, the greater good? The goods here are the provision
by a community of potable, safe, reliably so, water. Water is needed for life, so
the principle we might apply is a version of the primacy of life. Life envelopes
the community. The community exists to promote life. We have become aware
as a community of a problem of contamination. We now accept we must do
something, as a community, and we will suffer costs and anxiety. So be it.
Doing so will promote life, and at the very least we will learn from inferring
the consequences of our actions.3

One solution should at least proceed from these considerations.
#library( tidyverse )
#library( rethinking )
library(Rfast) # for column products
set.seed(42) # this will produce the same
# psuedo-random numbers each time we run this
# code
n <- 10
y <- c(3.87, 1.94, 2.36)
d <- tibble(

y = y
)
# make grid of hypothetical mu
mu <- c(1.0, 3.0)
sigma <- 1
pr_h <- rep( 1, length(mu) ) / length(mu)
#equally likely

3Nussbaum (2011) on Harsanyi (1977) for a Kantian-Aristotelian analogy and Hirschfeld
(2018) for a Thomistic-Critical Realist approach.
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# we sample to get an idea
pr_d_h <- sapply(mu, function(mu) dnorm(y,mu,sigma))
colprods(pr_d_h)

## [1] 0.0002633924 0.0202041833

likelihood <- colprods(pr_d_h) * pr_h
posterior <- likelihood / sum( likelihood )
posterior

## [1] 0.01286876 0.98713124

Pr_1_y <- posterior[ 1 ] #under the low contaminant S_1
Pr_2_y <- posterior[ 2 ] #under the high contaminant S_2
EL_1 <- Pr_2_y * 4
EL_2 <- Pr_1_y * 2
ifelse( EL_1 < EL_2, "drink from wells", "switch to other wells")

## [1] "switch to other wells"

S1 S2 E(L)
Do D1 0 L(doD1, S2) = 4 3.94
Do D2 L(doD2, S1) = 2 0 0.03

Pr(S1 | y) = 0.012 Pr(S2 | y) = 0.987

The answer seems to be to switch to other wells, given the 10 observations of
well water.

Or we can perform this analysis to retrieve levels of low and high contamination.
m_wells <- quap( alist(

y ~ dnorm( mu, 1),
mu <- a,
a ~ dnorm( 5, 1 ),
sigma <- 1

), data = d )
precis( m_wells, hist=FALSE )

## mean sd 5.5% 94.5%
## a 3.2925 0.5 2.493403 4.091597

# make grid of hypothetical mu
mu <- c(2.5, 4.0) # from credible interval
sigma <- 1
pr_h <- rep( 1, length(mu) ) / length(mu)
#equally likely
# we sample to get an idea
pr_d_h <- sapply(mu, function(mu) dnorm(y,mu,sigma))
colprods(pr_d_h)
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## [1] 0.021028732 0.001965781

likelihood <- colprods(pr_d_h) * pr_h
posterior <- likelihood / sum( likelihood )
posterior

## [1] 0.91451086 0.08548914

Pr_1_y <- posterior[ 1 ] #under the low contaminant S_1
Pr_2_y <- posterior[ 2 ] #under the high contaminant S_2
EL_1 <- Pr_2_y * 4
EL_2 <- Pr_1_y * 2
ifelse( EL_1 < EL_2, "drink from wells", "switch to other wells")

## [1] "drink from wells"

The credible interval analysis would seem to favor “drink from wells”! Perhaps
we should say that there is a threshold beyond which we would not want to
drink probably contaminated water. This goes to show that there is more to
the decision than these models can possibly include.

Rules to think by
Zellner (1971) espouses a Bayesian analysis of inferential deductive logic for
hypotheses as well as for decisions. He follows Jeffreys (1966) and his nine rules
of inductive inference. We can restate them here using the epistemological
language of Lonergan (1957) and his canons of general empirical method.4

Rule 1. “All hypotheses used may be explicitly stated, and the conclusions
must follow from the hypotheses.” (Jeffreys (1966), p. 8) A complete set
of hypotheses, decision alternatives, must be explicit to the analyst and the
consumer of the decision maker. But further, these hypotheses must deductively
result in a “complete explanation” (Lonergan (1957), p. 107-109) in the sense
that for a universe of discourse carved out by the analyst and decision maker,
the hypotheses must be able to result in a comprehensive set of conclusions.
One imagines the wrangle over the logically inconsistent use of modus tollens
to base inferences with the Null Hypothesis Significance Test framework.
If modus tollens is IF A, THEN B, AND NOT B, THEN NOT A then our
deduction that NOT A is valid. However if we deny the antecedent and argue
IF A, THEN B, AND NOT A, THEN NOT B we deduce inconsistently by
denying the antecedent.5

Example 3.

4The canons are listed, related to one another, and explicated in Insight, chapter 3.
Therein is a thematic approach to the inference rules set out by Jeffreys, Jaynes and Zellner.

5See this note in the Oxford Reference site: https://www.oxfordreference.com/display/10
.1093/oi/authority.20110803095711627

https://www.oxfordreference.com/display/10.1093/oi/authority.20110803095711627
https://www.oxfordreference.com/display/10.1093/oi/authority.20110803095711627
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If burglars, who do not have a key, entered by the front door (A the
antecedent), then they must have forced the lock, which requires a
key (B the consequent).

Now suppose we have data which indicates that the lock was not forced,
∼ B, denying the consequent. We can deduce from this data, namely, that
the burglars did not force the lock, ∼ B, that thus they also did not enter by
the front door, ∼ A. This is modus tollens or denying the consequent.

If the data we have is that the burglars did not enter by the front
door, ∼ A denying the antecedent, then it is illogical to deduce that
they did not force the lock. ∼ B. This is the fallacy of denying
the antecedent. They might have forced the lock, was startled by
the owners’ attack cat, and decided to enter the house by another route.
_______________________________________________

Rule 2. “The theory must be self-consistent; that is, it must not be possible
to derive contradictory conclusions from the postulates and any given set of
observational data.” (Jeffreys (1966), p. 5) This rule works in tandem with the
next rule.

Rule 3. “Any rule must be applicable in practice. A definition is useless unless
the thing defined can be recognized in terms of the definition when it occurs.
The existence of a thing or the estimate of a quantity must not involve an
impossible experiment.” (Jeffreys (1966), p. 5) Here are Lonergan (1957)’s
Canons of Selection, Relevance and Operations at work. We can unpack this
rule by a three-way division of labor. But we will only stop by the Canon of
Relevance here. We defer to Rule 5 for Canons of Selection and Operations,
not that they do not apply here! There is strong connection between Rules 3
and 5 bridged by Operations and Selection within the context of Operations.
Both of these point to Relevance, here. In fact it seems that Relevance and
Operations are flip-sides of the same coin.

Relevant data, propositions, criteria for choosing one intelligible pattern rather
than another, one decision alternative than another, all presuppose that data
can be applied to different sets of hypotheses, inform different species of
decisions, each require different sets of criteria. Data are raw and that flexible.
Using statistics as derived data can be even more problematic. Averages of
transactions can wash out very high and very low levels of measures, both
informative in their extremes. Perhaps they might be the only relevant part of
a data set, whereas the averages tell us nothing much interesting about the
pattern of the data we call intelligibility. And thus when applied to a decision
the analysis is irrelevant, plausibly. A most important part of the Canon of
Relevance is that it views data as emanating from beings as they relate to one
another, not to our measurements, the instruments by which we measure and
record, even to the observers. This canon is a first step to a principled notion
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of objectivity. There is are immanent patterns latent in all data which has
nothing to do with how the analysis is run, why we are analyzing something
in the first case, even what are the materials and resources involved in the
analysis. These immanent patterns in sensible data we are collecting are part
and parcel of the formal causality of the analysis. Nascent, inchoate somewhat,
yes, but immanently and thus relevantly critical to our analysis mission.

Rule 4. “The theory must provide explicitly for the possibility that inference
made by it may turn out to be wrong.” (Jeffreys (1966), p. 6) Jeffreys goes
on to state, categorically, we might be wrong do to error, incomplete and
evolving data, and an attitude of never allowing for revision. On the same
page he goes on to say “. . . [W]e have a certain amount of confidence that it
will be right in any particular case, though this confidence does not amount
to logical certainty.” ( ibid.) Lonergan (1957) agrees and uses this notion to
buttress an uncertainty principle in our analytical work. “[While i]t is true
enough that data are hazy, that measurements are not perfectly accurate, that
measuring can distort the measured object . . . [, yet one] can affirm them [and]
continue to misconceive classical laws[, such falling bodies.]” (p. 125) How
do we characterize the ways of affirming the indeterminant nature of laws in
the concrete? Not imaginatively, but as the “indeterminancy of the abstract.”
(p. 125)

Rule 5. “The theory must not deny any empirical proposition a priori;
any precisely stated empirical proposition must be formally capable of being
accepted, in the sense of the last rule [4], given a moderate amount of relevant
evidence.” (Jeffreys (1966), p. 6) Yes, only relevant propositions are allowed.
The only relevant propositions are those that have some sort of chance of
surviving the rigors of the Canon of Selection (Lonergan (1957), p. 94-97) and
the Canon of Operations (p. 97-99) implicit in our formal approach to finding
patterns, intelligibility in otherwise unintelligible data. Selection would restrict
us to sensible data, data we can observe as existing outside of our mental
images of the data in our minds. This canon and here Rule 5 restrict us to
propositions against which we can apply the restricted sensible data. If we
cannot do this, we cannot possibly search for intelligible anything in objective
reality, namely the pattern in the data susceptible to description, explanation,
and perhaps prediction. Operations is a many-headed hydra.

Operations would help us expand our consciousness about data using the
cumulative font of previous work. This means we use prior research to inform
answers to current questions, but it must be relevant. Operations also helps
us construct mentally, for all analysis is a figment of the imagination and
the intellect. Constructions are cumulative and so are they verified. We keep
what works and throw the rest into a bin for reuse. In this way they are also
systematic in that different pieces of constructions provide integrity, harmony,
and even clarity to any analysis. And if they do not, then they go into the
bin for reuse, repurposing. With operational constructions we understand and
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have a history of previous endeavors, how well they did or did not work, what
we can use or discard from previous analyses. In a word or two, operations
allow us to transcend our current state of operations and envision a different,
hopefully better by some rubric, way to proceed. All of this is the answer to a
question about the shape or form of the analysis.

These five rules are considered by many, including Jeffreys and Zellner, to be
essential. Jeffreys also indicates three more useful rules.

Rule 6. “The number of postulates should be reduced to a minimum.” (Jeffreys
(1966), p. 6) This is often stated as a variant of William of Occam’s Razor. What
William actually stated was apparently “Numquam pluralitas non est ponenda
sine necessitate.” (Any plurality is not to be posited without necessity.) This
principle is a component of the Canon of Parsimony for Lonergan (1957), p.102,
wherein any scientist must eliminate any statement which is not verifiable
and include only those statements which, currently, are. On the other hand,
Lonergan’s Canon of Relevance (p. 103) also requires the albeit parsimonious
inclusion of any insights which add to the raw data. While laws of nature
might in a particular experiment seem to fail, repeated experiments should
be able to come to a statistical law which can be affirmed as verified. The
key is to understand the difference between a law and an event. Events can
deviate from laws (trends, hypotheses, models), but to be verifable they cannot
deviate in any systematic way. If they do the other side of parsimony directs
us to consider including the perhaps newly discovered deviatoin into a new
formulation of the law, trend, or model. 6

Rule 7. “While we do not regard the human mind as a perfect reasoner,
we must accept it as the only one available. The theory need not represent
actual thought processes in detail, but should agree with them in outline.””
(Jeffreys (1966), p. 9) As with Lonergan (1957), p. 124-125, our brilliant ideas
are abstractions from practical reality. Thus they can only be further explained
and used to predict when yoked with the concrete circumstances of new events
as they unfold. Thus also more work by Jeffreys’ imperfect human reasoner is
always needed to determine further insights mashed together with concrete
situations. As if this is not enough, Lonergan goes on to imply if a new situation
arises, then unsystematic deviations might need either to be incorporated into
new models or else discarded as residues, at least relative to the abstraction
called a model. But one last point is that if the abstract understanding called
a model begins to degenerate, there is the “inverse insight” (p. 125) that this
degeneration is also intelligible and must be reported as a claim. Thus this
rule seems to be a species of Lonergans Canon of Statistical Residues. But

6This is an often used principle of logic and selection of the minimal set of hypotheses
needed to answer a question. St. Thomas Aquinas uses this principle to set up an objection
to the existence of God, which he roundly refutes by the superiority of causal over simple
explanations of anything. Summa Theologiae, q.3, a.3, ad 2.
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it also seems to require another Canon of Relevance to “fix our attention on
what insight adds to data.” (p. 125)

Something must be said about the imperfect human reasoner. And this will
not be a foray as much as into psychology as it will be into epistemology, the
study of how it is we know anything at all. The object is all being, asking
the question what is it? presupposing perhaps but at the least alongside the
more basic question is it? and all of this incompletely (we do not know all
the rules of this road) and imperfectly (we will at times erroneous apply
whatever rules we seem to know). The first question is formal causality, what
is the nature of, blueprint for, scaffolding, framework, approach we will use
for our analysis. The second question is about the existence of the object of
our various desires to understand. But it raises a question of final causality
called why bother? or what’s the purpose? the end we would like to achieve on
this mission, should we accept it. Both of these raise two more questions of
material causality, the what’s in the process, the people, technology platforms,
resources, materials, inputs, and efficient causality, the how the process of
inputs, activities, technology, know-how, conventional wisdom, yielding desired
outputs by decision makers. Let’s apply this causal heuristic to get a thumbnail
sketch of the imperfect human reasoner.

• The reasoner, or community of reasoners for that matter, are aware (not
not, remember the adjective imperfect) of raw data, use operations to
observe and record the data, or at least somehow remember the data.

• The reasoner then understands the data by throwing provisional hypotheses
like darts onto a known dart board. There is a center on this dart board, the
goal, the finality of the understanding. Some darts stick (they are consistent
with the data), others eventually will fall off to the floor. Whatever is left
is the pattern of data we might call the beginnings of an understanding.

• While there are several pointed projectiles on the dartboard only those
close enough to the center are very plausible, others not so. We can even
measure the distances of darts to the center to quantify our analysis. We
might say at this point that we can make a first judgment based on the is
it? question of yes it is.

There is a pattern in the data. This is what we will mean by systematic. It
might also answer something about the nature of the data, the what is it?.
Attributes like long-lived, very complicated, and it is blue by the way can
be verified on the dartboard. We have verified in data, using a reasonable
approach to belief in plausibility, called a distance. We can even add up all
of the distances to normalize the distance in a metric we call a probability.
Quite a leap and all part of the answer to the question of what is it? and the
blueprint we are using to answer questions at all.

Rule 8. “In view of the great complexity of induction, we cannot help to develop
it more thoroughly than deduction.” (Jeffreys (1966), p. 10) And thus the role
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of the use of the logic of pure mathematics. But if we use pure mathematics
in this logical way, then the notion of probability is not that of empirical
frequencies as we usually view them in elementary statistics courses, rather the
ordered degrees of reasonable, rational, belief about a claim. This means also
that any inductively constructed claim should emanate from a deductively valid
logic. One builds on the other. One verifies the other in concrete events. One
provides a deduced ordering of hypotheses when hypotheses are confronted by
data. There is thus some sort of uncertainty principle lurking here as Lonergan
points out: “For the concrete includes a nonsystematic component, and so the
concrete cannot be deduced in its full determinancy from any set of systematic
premises.” (Lonergan (1957), p. 123)

Upshots

What is the upshot, if any, from all of this dense verbiage?

• Statistical thinking and deciding is not for the faint-hearted. A leap into
a heuristic is required. But such a heuristic is based on how we know
and decide at all. Above all we need a measure of belief we can use in
a deduction about the consistency of data with the abstraction called a
model.

• Every analysis should begin with a four cause charter. Why are we doing
this analysis? (The purpose must be embedded in all aspects of our analysis
especially the criteria we apply.) What is the nature of this analysis? (We
recall the impassioned plea of the Canon of Relevance and Rule 3.) What
materials, resources, platforms do we need? How do we go from point A to
point B in the process of constructing a higher viewpoint for the consumer
of the analysis? (Operations, Relevance)

• Indeterminacy and uncertainty: All models are abstractions from reality.
When the rubber hits the road, are all plans are thrown out? No just
relegated to the recycle bin. Thus prepare to minimize our maximum
analytical grief. With indeterminacy, this grief will evolve differently for
different people.

• Getting to a complete explanation, but updating when new data, new
constructions, new criteria inevitably occur.

Here is the beginning of a way to incorporate many of the currents throughout
the Rules and Canons as we construct and analyze not only hypotheses, but
also their analogical correlate decision alternatives.

Loss, and hopefully found
Suppose we are brobing for a sustainable environment in which to live. We look
for clean water W , also find land L in the process. Without water, people will
die. Some land is also needed to sustain life, absorb water, and so on. Suppose
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we know that the amount of water relative to land to keep 100 (multiply by
the correct scaling factor to render reality) people alive is 70% of the overall
mass on which people are located, the rest, 30%, land to live on.

We have data which suggests that we found in 10 experimental probes of our
joint water/land mass, that 6 probes found water and 4 found land. We want
to safeguard life so we propose that given the risk (probability) of not finding
enough water it is possible people will perish. If we find too much water, there
will be not enough room for people to live, as apparently they do not have the
technology (yet) to live extensively on water. Although some very few folks
seem to, at times. An we have no idea at all before we send water and land
sensitive probes what the proportion of water is.

Given all of this we first determine the probabilities of various proportions of
water, p. A grid will help us specify these various proportions. A binomially
distributed observation model will help us compute the likelihood of a proposed
proportion given the probe data, namely 6 water and 4 land for a total of 10
tries.
W <- 6
n <- 10
L <- n - W
grid_out <- 1000
p_grid <- seq( from=0, to=1, length.out=grid_out)

We just generated 1000 equally spaced proposed proportions p from zero water
and all land, p = 0.00, to no water at all, all land p = 1.00, all with the seq()
function. With this specification we completely covered the space of possible
proportions, realizing we can zoom into each equally spaced interval, should
we ever want to.

Next we combine the data W and n with the proposed proportions p using
a relevant plausibility generator known as the binomial distribution. It
is relevant since it is the distribution which can analyze binary data, such as
water and land, in multiple sampling probes. We assume we know nothing at
all about the plausibility of water on this mass of land and water, so that our
prior expectation of a proportion is quite vague, just equally likely, even before
we apply data, nay, before we sample data.
# we have no idea
prior <- rep( 1, grid_out )
# we sample to get an idea
likelihood <- dbinom( W, n, prob=p_grid )
likelihood_prior <- likelihood * prior
posterior <- likelihood_prior / sum( likelihood_prior )

A little exploration of the posterior’s impact on proportions needs this sampling
of the p_grid, with replacement, of course.
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n_samples <- 1e6
samples <- sample( p_grid, prob=posterior, n_samples, replace=TRUE )
lower <- 0.05; upper <- 0.95
sum( samples >= lower & samples < upper ) / n_samples

## [1] 0.999892

quantile( samples, c( 0.10, 0.90 ))

## 10% 90%
## 0.4014014 0.7587588

And the action is mostly between the lower and upper bound coded here. A
little bit of zoom-in shows that their is a 80% (90% - 10%) probability that
the proportions are between a low of about 0.40 and a high almost of 0.76. We
remember that our goal is 70%; more than this target we do not have enough
land, less than this target we do not have enough water. It does not look too
promising for some people?

We have a decision to make
We suppose that we will lose people at a constant rate proportional to the
distance our actual proportion of water is from the target of 70%, in both
directions! One side is too much land and too little water (p < 0.70), the other
is too much water and too little land (p > 0.70). A plot tells the story.

To illustrate these ideas suppose our data is all positive (ratio data in fact).
If p∗ = 0.70 then the loss function is the aabasolute value of the distance
between actual p and target p∗. In our very simplistic example, the loss is both
symmetric, and that the rate is unitary.

L(p, p∗) = |p− p∗| (1)

Our loss function has this appearance, the so-called check function.
p_star <- 0.70
alpha <- 1.0
#X <- seq(0, 1, length.out = 100)
loss <- alpha * abs(p_grid - p_star)
Lp <- tibble(

p = p_grid,
Loss = loss,
posterior = posterior
)

p <- Lp |>
ggplot(aes( x = p, y = Loss )) +
geom_line(color = "blue", size = 2.0) +
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geom_vline(xintercept = p_star, linetype = "dashed") +
geom_point(x = p_star, y = 0, color = "red", size = 3) +
geom_hline(yintercept = 0.0) +
xlab("proportion of water") + ylab("Loss of life")

p #plotly::ggplotly(p)
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Now let’s see what happens when we superimpose the posterior distribution of
proposed proportions onto the loss plot.
max_post_p <- p_grid[ which.max( posterior ) ]
p <- Lp |>
ggplot(aes( x=p, y=Loss )) +
geom_line( color="blue", size = 2.0 ) +
geom_line( aes( x=p, y=posterior*100 ), color="red", size=1.75) +
geom_vline( xintercept=p_star, linetype="dashed", color="blue", size=1.0 ) +
geom_point( x=p_star, y=0, color="red", size=2.5 ) +
geom_point( x=max_post_p, y=p_star-max_post_p, color="red", size=2.5 ) +
geom_vline( xintercept=max_post_p, color="red", size=1.25 ) +
geom_hline( yintercept=0.0 ) +
xlab( "proportion of water" ) + ylab( "Loss of life" ) +
scale_y_continuous(
# Features of the first axis
name = "Loss of life",
limits = c( 0, 0.4 ),
# Add a second axis and specify its features
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sec.axis = sec_axis(~.*1, name="Probability of proportion of water")
)
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Well that loss function certainly does not line up with the median, the most
likely a posteriori probability! We will have a loss! So the question becomes
can we intervene somehow to minimize the loss? We must have a lever to pull.
This lever might be something that the proportion of water could depend on.
The search continues!

Ground control, we have a problem
Now to a completely made-up model. Let’s suppose we have the following
generative model of independent (and controllable) xt somehow influencing
dependent variable yt. The t subscript is just a sequential index.

yt ∼ Normal(µy, σ
2
y), (2)

µy = α+ βxt, (3)
xt ∼ Normal(0, 1), (4)
α ∼ Normal(1, 1), (5)
β ∼ Normal(2, 1), (6)
σy ∼ Exponential(1) (7)
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So far, just another day of simple linear regression.
n <- 1000
alpha <- rnorm( n, 1, 1)
beta <- rnorm( n, 2, 1)
x <- rnorm( n, 0, 1 )
y <- alpha + beta*x
d <- tibble(

x = x,
y = y

)
d |>
summary()

## x y
## Min. :-2.97113 Min. :-9.0922
## 1st Qu.:-0.59881 1st Qu.:-0.1397
## Median : 0.09734 Median : 1.2286
## Mean : 0.07359 Mean : 1.1902
## 3rd Qu.: 0.70131 3rd Qu.: 2.3908
## Max. : 3.11781 Max. :11.1361

We then run the quadratic approximation estimation of the model, just revers-
ing what we already know.
#library(rethinking)
m_0 <- quap(

alist(
y ~ dnorm( mu_y, sigma_y ),
mu_y <- alpha + beta*x,
alpha ~ dnorm( 0, 1),
beta ~ dnorm( 0, 1),
sigma_y ~ dexp( 1 )

), data = d
)
precis( m_0, hist=FALSE )

## mean sd 5.5% 94.5%
## alpha 1.046857 0.04335655 0.9775644 1.116149
## beta 1.921122 0.04410551 1.8506328 1.991611
## sigma_y 1.368499 0.03056361 1.3196527 1.417346

Nicht Neues here. The model estimate parameter values very close to the one’s
we generated our data with.

With all this talk of generated data, let’s generate predicted values of y
calling these z using the same model m0 but with a set of projected x values
we will call w. The rethinking::sim() function will produce (trying not to
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over-use generate!) as many columns as there are elements of w we project,
perhaps 41. For each column sim() simulates values of z, perhaps 1000.
w <- seq( from=-2, to=2, by=0.1)
z <- sim( m_0, data=list( x=w ))
a <- 1 #target z
L <- (z-a)ˆ2 #Loss
L_median <- apply( L, 2, median ) #expected Loss
d_L <- tibble(

w = w,
EL = L_median

)
L_min <- min( L_median )
w_star <- w[ which.min( L_median ) ] #min_w EL
p <- d_L |>
ggplot( aes( x=w, y=EL) ) +
geom_line( color = "blue", size = 1.5 ) +
geom_point( aes( x=w_star, y=L_min ), color="red", size=2.00 ) +
geom_vline( xintercept=w_star, color="red", size=1.25 ) #+
#geom_histogram( aes( x=EL )) +
#scale_y_continuous(
# Features of the first axis
#name = "Loss of life",
#limits = c( 0, 0.4 ),
# Add a second axis and specify its features
#sec.axis = sec_axis(~.*0.001, name="Probability of of clean water")

#)
p
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And now the distribution of the expected loss, E(L(z | y, w)), just for compar-
ison.
#under consruction
d_L |>
ggplot( aes( x=EL ) ) +
geom_density() +
geom_hline( yintercept=0 )
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library(MKmisc)
summ_EL <- d_L |>
summarize(

mean = mean( EL ),
mad = sum( abs(EL - mean(EL)))/length(EL),
Q25 = quantile( EL, 0.25),
Q50 = quantile( EL, 0.50),
Q75 = quantile( EL, 0.75),
IQR = quantile( EL, 0.75) - quantile( EL, 0.25),
tail = max( EL ) - quantile( EL, 0.75),

)
t(summ_EL) # transpose row into a column

This is definitely not a Gaussian distribution, more like an exponential mixed
with a Gamma. We know that this is what a Generalized Pareto Distribution
tends to look like. Extreme values seem important. The median of the medians
is xxx. The IQR is xxx. The difference between the tail and the IQR is xxx.

We now have something of an answer to the question of what value of the
independent and controllable w = x will minimize the loss which results from
failing to achieve the target a.7 We also now have a principled way to begin to
challenge an intervention.

As if this is not enough let’s superimpose Pr(z | y, w∗) onto the simulated loss

7This is known as a stochastic optimal Linear-Quadratic-Predictor (LQP) problem.
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function. We repeat the entire workflow here to embed it in our analytical
memories.
w <- seq( from=-2, to=2, by=0.1)
z <- sim( m_0, data=list( x=w ))
a <- 1 #target z
L <- abs(z-a) #Loss or (z-a)ˆ2
L_median <- apply( L, 2, median ) #expected Loss
d_L <- tibble(

w = w,
EL = L_median

)
L_min <- min( L_median )
w_star <- w[ which.min( L_median ) ] #min_w EL
p <- d_L |>
ggplot( aes( x=w, y=EL) ) +
geom_line( color = "blue", size = 1.5 ) +
geom_point( aes( x=w_star, y=L_min ), color="red", size=2.00 ) +
geom_vline( xintercept=w_star, color="red", size=1.25 )

p
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This looks a lot like the L = (z − a)2 case.



24 0 Contents

What could possibly be next?
Was that enough? For now at least. We accomplished a lot. But perhaps the
biggest takeaway is our new found ability to deploy simulation with probability
with compatibility of hypotheses with data to arrive at learning about the
data. We learned because we inferred. But then we extended this capability to
the realm of decision making itself.
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