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1 System Dynamics Overview 

This modeling guide is intended to introduce some of the basic concepts of building and using models 
and provide a number of examples to improve understanding.  If you are new to Vensim you should 
first work through the Vensim User’s Guide..   

Each chapter in this Guide contains a model, or set of models, which you can build as you work 
through the chapter. Finished models for each section are included with the software in the mguide 
subdirectory of models (normally c:\Program Files\Vensim\models\mguide).  Each chapter has a 
subdirectory that begins with the chapter number.  The name of the model appears in the applicable 
title or subtitle of this guide.  If you want to build the models yourself, you should use a different name 
or work in a different directory.  

There are very few mechanical instructions for building models in this guide.  If you are having 
trouble, you might want to go back to the Tutorial and find the instructions for building a similar 
structure. 

Events, Behavior and Structure 

Our lives are filled with events:  birthday parties, graduations, job starts, product launches, retirements, 
arguments, agreements and storms.  Because of their prevalence events tend to fill our discussions.  In 
terms of understanding our world, however, events turn out to have limited usefulness.  These 
limitations are well recognized in the physical sciences.  If  a teacher were to stand in front of a class 
and drop a piece of chalk and ask the class "why did the chalk hit the ground?"  the response, "because 
you let go of it" would generate a chuckle and quickly be dismissed.  If, however, you were to put the 
same student into a suit and ask of her "why did stock prices fall?" the response "because the Federal 
Reserve announced that it was increasing interest rates" would be considered serious and correct.   

One step back from events is the idea of behavior patterns.  A behavior pattern is something that 
connects together a long series of events over time.  The American revolution was an event.  The 
extent of suppression, resentment and taxation in the decades preceding the revolution were patterns of 
behavior.  Once you step away from events and begin considering patterns of behavior questions such 
as "what caused ..." are given a different and much deeper meaning.  We are no longer searching for an 
event that precedes or corresponded with another event.  Rather we are looking for sources of pressure 
and imbalance that cause things to change. 

Structure is the set of physical and information interconnections that generate behavior.  Inventory is 
the accumulation of production less shipments.  Workforce changes with hires and attrition and hiring 
is based on the targeting of production to meet demand and correct inventory imbalances.  The result 
of this is that the inventory level moves up and down (behavior) and we now have so much inventory 
that we are not profitable and the CEO has been fired (an event).  Structure determines behavior and 
events are snapshots of that behavior. 

The event—behavior—structure distinction is an important tool for understanding and working with 
problems.  Ultimately, successful policies and interventions need to be changes to structure, so that 
behavior is improved and bad events become less frequent.  System dynamics and Vensim, provide 
you with tools to represent structure, and understand how it determines behavior. 

The System Dynamics Process 
Though there is no universally accepted process for developing and using good quality system 
dynamics models there are some basic practices that are quite commonly used. A more complete 
description of the modeling process is contained in "Guidelines for Model Conceptualization," by 
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Jørgen Randers in Jørgen Randers (ed.), Elements of the System Dynamics Method, MIT Press, 
Cambridge, MA 1980 pp. 117-138 (now available from Pegasus Communications). 

The following steps are a useful guideline.   

Issue statement.  The issue statement is simply a statement of the problem that makes it clear what the 
purpose of the model will be.  Clarity of purpose is essential to effective model development.  
Developing a model of a system or process without specifying how the system needs to be improved or 
what specific behavior is problematic is difficult.  Having a clear problem in mind makes it easier to 
develop models with good practical applicability. 

Variable Identification.  Identify some key quantities that will need to be included in the model for 
the model to be able to address the issues at hand.  Usually a number of these are very obvious.  It can 
sometimes be useful just to write down all of the variables that might be important and try to rank them 
in order to identify the most important ones. 

Reference modes.  A reference mode is a pattern of behavior over time.  Reference modes are drawn 
as graphs over time for key variables, but are not necessarily graphs of observed behavior.  Rather, 
reference modes are cartoons that show a particular characteristic of behavior that is interesting.  For 
example, a company's sales history may be growing but bumpy, and the reference mode may be the up 
and down movement around the growth trend.  Reference modes can refer to past behavior, or future 
behavior.  They can represent what you expect to have happen, what you fear will happen and what 
you hope will happen.  Reference modes should be drawn with an explicitly labeled time axis to help 
refine, clarify and bound a problem statement. 

Reality Check.  Define some Reality Check statements about how things must interrelate.  These 
include a basic understanding of what actors are involved and how they interact, along with the 
consequences for some variables of significant changes in other variables.  Reality Check information 
is often simply recorded as notes (often mental notes) about what connections need to exist.  It is based 
on knowledge of the system being modeled.  In Chapter 9 we will make this information explicit using 
the Reality Check functionality in Vensim. 

Dynamic hypotheses.  A dynamic hypothesis is a theory about what structure exists that generates the 
reference modes.  A dynamics hypothesis can be stated verbally, as a causal loop diagram, or as a 
stock and flow diagram.  The dynamic hypotheses you generate can be used to determine what will be 
kept in models, and what will be excluded.  Like all hypotheses, dynamic hypotheses are not always 
right.  Refinement and revision is an important part of developing good models. 

Simulation Model.  A simulation model is the refinement and closure of a set of dynamic hypotheses 
to an explicit set of mathematical relationships.  Simulation models generate behavior through 
simulation.  A simulation model provides a laboratory in which you can experiment to understand how 
different elements of structure determine behavior. 

The above process is iterative and flexible.  As you continue to work with a problem you will gain 
understanding that changes the way you need to think about the things you have done before.  Later 
chapters in this guide go through the process of model development from a number of different 
perspectives placing emphasis on different parts of the above process. 

Vensim provides explicit support for naming variables, writing Reality Check information, developing 
dynamic hypotheses and building simulation models.  Creating good issue statements and developing 
reference modes can easily be done with pencil and paper or using other technologies.  Dynamic 
hypotheses can be developed as visual models in Vensim, or simply sketched out with pencil and 
paper.  Simulation is the one stage where it would be impractical to dispense with the computer 
altogether. 

Fundamental Structures and Behaviors 

As discussed above the process of building models requires the generation of an hypothesis about what 
kind of structure might be responsible for the behavior in the reference mode.  This can be quite 
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difficult, but it does become easier as you gain experience with model building.  One reason it 
becomes easier is that you will gain experience with different structures and the behavior they 
generate.  Studying the simplest and most fundamental patterns of behavior and the simplest structure 
that can generate the behavior is a useful way to get started on gaining this experience.   

In the following sections we percent growth, decay, adjustment and oscillation and some simple 
structures that generate them.  The models are presented in causal loop form to emphasize feedback 
which is an essential part of generating a dynamic hypothesis. 

Exponential Growth (money.mdl) 
Suppose that you deposit $100 in the bank.  If the interest rate is 10% per year (compounded daily) and 
you wait 100 years what will happen?  This is an example of a first order positive feedback loop. 

money

interest

interest rate

   

money
money

4 M

2 M

0
0 50 100

Time (Year)  
At the end of 100 years there would be over two million dollars in the bank.  Exponential growth is 
interesting because it demonstrates a constant doubling time.  If it takes, as it does in this example, 
about 7 years to go from 100 to 200 dollars, it will also take about 7 years to go from 1 million to 2 
million dollars.  It is a useful exercise to explore the relationship between the interest rate and the time 
it takes the money to double.   

Note that for this example you can either select TIME STEP to be small enough (about .125) so that it 
makes no difference or choose Runge-Kutta integration. 

Exponential Decay(workers.mdl) 
Suppose that you have 100 people working for you and you decide never to hire anyone again.  Your 
average worker hangs around for 10 years.  What will happen to your workforce?  This is an example 
of a first order negative feedback loop. 

workers

attrition

average tenancy

 
workers
workers

100

50

0
0 20 40

Time (Year)  
The number of workers will decrease, very quickly at first and then more slowly.  This is the opposite 
of exponential growth where changes was slow at first and then quick and there is a similar constancy 
in exponential decay.  If it takes, as it does here, about seven years for half the workers to leave, it will 
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take another seven for half of those that remain to leave.  It is interesting to experiment and see the 
relationship between average tenancy and the time it takes half the workers to leave.   

The important thing about exponential decay is that if you move the goal away from zero, you get the 
same behavior.  Suppose you have a house at 10 degrees and you put it into a 40 degree neighborhood, 
what happens to the house temperature?   

S Shaped Growth (mice.mdl) 
Suppose that you let some mice loose in your house and don't try to kill them.  What will happen to the 
mouse population?  At first glance this sounds very much like the exponential growth example, and for 
the first little time it is.  Try as they might, though, the mice will never get 2 million of themselves into 
your house.     

Mice

net new mice

normal carrying capacity

effect of density on survival

max net new mice rate

effect of density on survival function  

Graph for Mice
800

400

0
0  30  60

Time (Month)

Mice - mice Mice
 

The beginning of this does indeed look like exponential growth while the end looks like exponential 
adjustment.  To get this kind of transition there has to be more than a single feedback loop operating.  
Often, and in the case of this simple model, there are both a positive and negative feedback loop with 
the positive loop dominate in the beginning and the negative loop dominant in the end. 

It is interesting to experiment with the Constant max net new mice rate   to see the effect this 
has.  Watching the way net new mice behaves as you change values is especially interesting.  
The process of adjustment in this model is almost entirely dependent on the shape of the Lookup 
effect of density on survival function.  Experimenting with different shapes for this 
function can also be interesting. 
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Oscillation (spring.mdl) 
Consider the problem of a spring pushing a weight on a frictionless horizontal surface.   

position

Velocity

acceleration

spring constant

mass

force

 
spring
position

20

0

-20
0 20 40

Time (Second)  
You need to be sure to use Runge-Kutta integration when simulating this model to get the correct 
result.  This is the simplest structure that can generate oscillations, and the oscillations are undamped. 

Consider the closely related problem of a constancy that uses time not spent doing billing work to 
bring in new clients (consult.mdl): 

active clients

Clients
contracting

billable work

marketing effort

marketing effort required

contracting time

average caseload

total hours

clients becoming active

clients departing

average tenure

 
This model is driven by a step increase in total hours.  It also has a somewhat involved set of 
initialization equations and is shown with these links hidden. 

Graph for billable work
600,000

400,000
0  10  20

Time (Year)

billable work - consult Hour/Year
billable work - consult2 Hour/Year
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The striking thing in comparing these two oscillating models is the addition of the two extra loops in 
the second model.  It is actually quite rare to get a single loop with more than a single level in business 
systems.  The rule is that there are likely to be a number of minor negative loops and these, in general, 
will be damping. 

It is a useful exercise to experiment with changing constants in these to models and understanding how 
they influence behavior.  The Workforce Inventory model in Chapter 2 and the discussion in Chapter 8 
go further into oscillation. 
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2 Workforce, Inventory and Oscillation 

This chapter is focused on the conceptual issues in the development, analysis and use of a model.  
After working through this chapter you should have a better understanding of how to think about, and 
work through, a dynamic model with Vensim. 

Background 

You are involved in the production and sale of prefabricated window frames.  Overall your company is 
doing quite well, but you often go through periods of low capacity utilization followed by production 
ramp up and added shifts.  While all of this is normally blamed on market demand and the condition of 
the economy, you have your doubts.  Looking back at sales and production over the last 8 years it 
seems that sales is more stable than production.  Your goal is to determine why this might be, and what 
you can do about it. 

In attacking this problem you want to simplify as much as possible your current situation.  There are a 
number of reasons for this simplification: 

• It is easier to understand a simple model. 

• You can get results quickly and decide if you are on the right track. 

• It is more effective to start with a simple model and add detail, than to build a complex model 
and attempt to extract insights from it after it is complete. 

• Using a simple model forces you to take an overview which is usually useful in the initial 
modeling phases. 

It is not always true that you want to start building simple models.  In many cases the behavior you see 
is the result of complexity, and Vensim provides a very rich set of tools for dealing with complexity.  
Until you have had substantial experience, however, simplicity is highly recommended.  While it is not 
uncommon to discover that what you have developed is not rich enough for the problem you wish to 
address, it is rare not to gain understanding in the process.  Conversely, large complex models can 
become significant resource drains, providing no payoff for a very long time. 

Reference Modes 
A reference mode is a graphical statement about a problem.  Verbally, the problem was stated as 
"production is less stable than sales."  Graphically we might draw: 

 
This reference mode is a sketch of behavior we might expect a model to produce.  It might be real data 
from your records, or your expectation of what might happen in a new situation.  The reference mode 
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is used to focus activity.  Having mapped out one or more reference modes the goal is to define the 
simplest structure that is sensible and capable of generating patterns of behavior that qualitatively 
resemble the reference modes.  If appropriate, such a structure can also be refined in order to develop a 
model that can be validated quantitatively against the available data. 

Reality Check 
Lets put down some common sense statements about how the business works. 

• Without any workers there is no production. 

• Without any inventory we can't ship. 

• If sales go up for a sustained period we will try to expand production. 

• With no production inventory will never go up. 

Reality Check information in this form should be kept in the back of your mind as you develop 
dynamics hypotheses and build a simulation model. 

Dynamic Hypothesis 
A dynamic hypothesis is an idea about what structure might be capable of generating behavior like that 
in the reference modes.  For this example we can formulate a dynamic hypothesis simply by thinking 
about how the two variables in the reference mode are connected — that is by specifying the set of 
policies (or rules) that determine production given sales.  The dynamic hypothesis for this firm 
is that a manager is setting production based on current sales, but is amplifying the amount resulting in 
higher (or lower) production than is necessary.  The reference mode supplies us with two variables —
production and sales — that we will want to include in the model.  This is a reasonably good 
basis on which to begin a sketch, so let us put these variables down to start the model.  

Workforce / Inventory Model (wfinv1.mdl) 

Now the question arises, how are production and sales related.  Clearly there is a close 
relationship, since it is necessary to produce something before it is sold.  Sales and production are 
related in two ways: 
Physical: production is required to produce goods to sell 
Information: managers base production decisions on current or recent sales 

We will start the model with the physical side.  When production occurs, goods are not immediately 
sold.  Instead, they are stored in an inventory until a sale occurs, at which point they are removed from 
inventory.  In general, there will be an inventory, or some combination of inventory and backlog, 
separating production from sales.  If a backlog is used in the model, it is useful to consider orders and 
shipments instead of simply sales.  In this model, we will just use an inventory.   

We construct Inventory as a Level, then add a rate flowing in and a rate flowing out.  Next, we use 
the variable merge tool to drag our two existing variables, production and sales onto the 
valves. 

production sales
Inventory

 
It is worth noting at this point that we could have created the same diagram by first entering the level 
containing Inventory, then adding and naming the two rates.  The reason we chose to add 
Inventory then attach the existing variables as rates was to work through the problem as it came to 
light, rather than working out the problem first then putting it on the sketch. 
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Workforce 
Now we need to figure out how production gets determined.  Over the long term investment and 
capacity are clearly important, but these have been extremely stable.  In the shorter term more people 
are hired and, if necessary, an additional production shift added.  There is quite a bit of complicated 
stuff going on when shifts are added: management changes, maintenance scheduling problems arise, 
and so on.  However, as a first approximation, more people make more products, and this is a good 
starting point, so we add the level Workforce.   

The things that change workforce are hiring, layoffs, firings and retirements.  Again, for simplicity we 
combine all of these into a composite concept — the net hire rate.  Note that net hire rate can 
either increase or decrease the workforce.   

net hire rate

production sales
Inventory

Workforce
 

Behavioral Relationships 
This is the physical part of the problem.  Now it is necessary to make some of the behavioral 
(information) connections.  Putting down the important physical stocks and flows is often a good 
starting point in developing a model.  It lets you make part of the system concrete, and this can 
simplify the conceptualization of other parts of the system.  Alternative approaches include building a 
causal loop diagram and converting that to stock and flow form, or writing equations directly from 
causal loop diagrams.  You might also want to draw a causal loop diagram, then start over again with a 
stock and flow diagram.  What works best varies by individual and by problem, so we try to present 
some alternative approaches in different chapters in this guide. 

In completing the information connection, we will try to keep things as simple as possible.  Starting 
with production we want to remove all the complexities of adding shifts and mothballing equipment 
and simply state that production is proportional to Workforce.  We add the proportionality 
constant productivity.  Also, net hire rate is dependent on the value of Workforce. This 
gives us:  

net hire rate

production sales

productivity

Inventory

Workforce

 
The net hire rate is the net number of people hired.  The most straightforward way to formulate this is 
as a stock adjustment process.  In a stock adjustment process you take an existing value of a variable 
(usually a stock) and compare it to some target or desired level, then take an action based on the 
difference between the two.  For example if you are driving a car at 40 MPH and wish to be going 50 
MPH you would depress the accelerator.  Your car's speed (a stock) will increase at a rate that depends 
on how far you depress the accelerator and the car you are driving.  

To capture this stock adjustment process we add in the variables target workforce and time
to adjust workforce and connect them as shown : 
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Workforce

Inventory

productivity

salesproduction

net hire rate

target workforce
time to adjust workforce  

time to adjust workforce represents the time required for management to agree on a change 
in the workforce level and screen potential applicants or notify workers to be laid off. target
workforce is the number of people you need to produce the amount you want to produce.  The 
Level Workforce is initialized at this value.  Now we add the concept of target production, 
and connect it to target workforce.  We will set target production on the basis of 
sales. 

Workforce

Inventory

productivity

salesproduction

net hire rate

target workforce
time to adjust workforce

target production

 
This is a complete model, though it does have a critical error of omission which will be brought to light 
during simulation.  The next step is to take the conceptual model and turn it into a simulation model. 

Equation Set wfinv1.vmf 

The full equation set for this model follows: 

FINAL TIME = 100
Units: Month

INITIAL TIME = 0
Units: Month

TIME STEP = 0.25
Units: Month

SAVEPER = TIME STEP
Units: Month

Inventory = INTEG(
production-sales,

300)
Units: Frame

net hire rate = (target workforce-Workforce)/time to adjust
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workforce
Units: Person/Month

production = Workforce*productivity
Units: Frame/Month

productivity = 1
Units: Frame/Month/Person

sales = 100 + STEP(50,20)
Units: Frame/Month

target production = sales
Units: Frame/Month

target workforce = target production/productivity
Units: Person

time to adjust workforce = 3
Units: Month

Workforce = INTEG(
net hire rate,

target workforce)
Units: Person

Each equation is consistent with discussion during the initial conceptualization.  The equation for 
sales has sales steady at 100 until time 20, when sales step up to, and thereafter remain at, 150.  
This input pattern is used to test that the system is indeed at an equilibrium, and then check the 
adjustment to a new operating condition.  This step input pattern is the cleanest pattern available for 
looking at the internally generated dynamics of a system such as this. It allows you to observe how a 
single shock propagates through the system without further external disturbance. 

The model is complete.  A simulation is performed with the name WF1. 

Analysis 

A Causes Strip graph for production and causes strip of Workforce show the dynamics. 

WF1
production

200

140

80
Workforce

200

140

80
0 50 100

Time (Month)             

WF1
Workforce

200

140

80
net hire rate

20

10

0
target workforce

200

140

80
0 50 100

Time (Month)  

It is immediately obvious that there is not a lot of variability in production or Workforce.  There 
is very smooth adjustment from the initial 100 Widgets/Month to 150 Widgets/Month. Unlike our 
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reference mode, the model does not appear to generate more variability in production than sales. At 
this point it is worth taking a look at Inventory. 

Graph for Inventory
400

200

0
0  50 100

Time (Month)

Inventory - WF1 Widget
 

Inventory falls smoothly from its initial value of 300, to about 150.  Since the purpose of holding 
an inventory is to be sure that the right product configuration is available for customers, there is clearly 
something wrong.  Any discrepancy in Inventory from the level  necessary to meet product mix 
requirements and have a comfortable safety stock needs to be corrected, and this model does not make 
that correction. 

Model Refinement (wfinv2.vmf) 

In order to refine the model we introduce target inventory, inventory correction and 
two additional Constants.  The idea is simple — target inventory is the amount of stock that 
should be held based on expectations about sales.  The inventory correction is the correction 
for a deviation of Inventory  from its target.  A new loop has been introduced and is highlighted. 

Workforce

Inventory

productivity

salesproduction

net hire rate

target workforce
time to adjust workforce

target production

target inventory

inventory coverage

inventory correction

time to correct inventory

 

Additional Equations 

target production = sales + inventory correction
Units: Frame/Month

inventory correction = (target inventory - Inventory)/
TIME TO CORRECT INVENTORY

Units: Frame/Month
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TIME TO CORRECT INVENTORY = 2
Units: Month

target inventory = sales * INVENTORY COVERAGE
Units: Frame

INVENTORY COVERAGE = 3
Units: Month

inventory correction is a stock adjustment formulation, just as net hire rate was. The 
time to correct inventory represents the time required to notice significant changes in 
inventory and schedule corrections in production. 

The important difference between this formulation and that of net hire rate is that the 
net hire rate directly influences the stock it is attempting to adjust (Workforce) whereas 
inventory correction influences target production, net hire rate, 
Workforce, production and finally inventory.  This connection has an intervening level, 
Workforce, which has important dynamic consequences. 

Refined Model Behavior 

The model is simulated and the run named WF2.  First generate a graph of behavior for Workforce 
with datasets from both runs loaded WF1 and WF2.   

Graph for Workforce
200

140

80
0  50 100

Time (Month)

Workforce - WF1 Person
Workforce - WF2 Person

 

The behavior is dramatically different from the earlier model.  Workforce is less stable and there is 
oscillation. Causal tracing is performed on Workforce, and on target workforce (graph not 
shown) and target production, and the output shown below: 
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WF1
WF2
Workforce

200

140

80
net hire rate

60

0

-60
target workforce

400

200

0
0 50 100

Time (Month)       

WF1
WF2
target production

400

200

0
inventory correction

100

30

-40
sales

200

140

80
0 50 100

Time (Month)  

inventory correction was not in the first model.  Therefore there is no plot from WF1 for 
inventory correction.  All the oscillatory behavior in target production is due to 
inventory correction.  A graph of Inventory shows similar oscillation, but a different final 
value from the first run. When sales increase, inventory now eventually adjusts to a new, higher 
desired level, rather than falling as before. 

Graph for Inventory
600

300

0
0  50 100

Time (Month)

Inventory - WF1 Widget
Inventory - WF2 Widget

 
 

Phasing and Oscillation 

To get some useful insight into this model, and oscillations in general, use the Graphs tab in the 
Control Panel to create a graph containing Inventory, target inventory, production and 
sales.  Set the scales to zero minimum and 600 maximum values for all variables.  You will also 
need to go the Datasets tab of the Control Panel and put WF2 first. 
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Phasing and Oscillation
600 Widget
600 Widget/Month

0 Widget
0 Widget/Month

0  50 100
Time (Month)

Inventory - WF2 Widget
target inventory - WF2 Widget
production - WF2 Widget/Month
sales - WF2 Widget/Month

 
We want to focus in on the timing of changes just after the jump in sales.  Hold down the shift key and 
dragging across the portion of the graph of interest, or go to the Time Axis tab of the Control panel, to 
set the time focus from approximately 18 months to 36 months.  Now the custom graph generates this 
output: 

Phasing and Oscillation
600 Widget
600 Widget/Month

0 Widget
0 Widget/Month

 18  27  36
Time (Month)

Inventory - WF2 Widget
target inventory - WF2 Widget
production - WF2 Widget/Month
sales - WF2 Widget/Month

 

Initially, when sales step up, inventory begins to fall because sales exceed production. 
production gradually increases because target production increases with sales and 
inventory correction increases as inventory falls. However, there is a delay in this process 
due to the time required to hire new workers. By month 21.3, production is equal to sales, so 
inventory stops falling and then begins to grow. 

While Inventory is increasing, so is production.  As long as inventory is below target
inventory, there is pressure to increase production, even when production is already above 
sales.  In fact, production needs to get sufficiently above sales so that the ongoing difference 
balances the pressure from inventory correction before net hire rate will go negative. 
Note that when Inventory is equal to target inventory, production is still higher than 
sales because the workforce is excessive, causing an ongoing increase in  Inventory. The 
variability in production is now greater than that in sales; the model is exhibiting the kind of 
amplification we identified in the reference mode. 

In fact, the amplification of variability from sales to production is physically inevitable. The change in 
production must exceed the change in sales for some time in order to replace inventory lost before 
production can adjust and to adjust inventory to the new, higher target level. 
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Sensitivity 
It is interesting to experiment with the model by changing different parameters.  One possible policy to 
improve the company's performance would be to correct deviations in inventory more aggressively. 
We can simulate this by using a decreased value for time to correct inventory.  Reducing 
time to correct inventory from 2 months to 1 month, we get the simulation output for 
production: 

Graph for production
400

200

0
0  50 100

Time (Month)

production - WF1 Widget/Month
production - WF2 Widget/Month
production - WF3 Widget/Month

 
Here we find that reducing the delay in correcting inventory actually increases the amplitude (and 
decreases the period) of the oscillations, not necessarily a desirable thing for a firm to experience!   

Having worked through the modeling exercises the explanation for this response is quite intuitive.  The 
system needs to overshoot in order to build inventory.  Trying to rebuild inventory more quickly will 
increase the size of that overshoot.  Because of the delays involved that overshoot will also lead to an 
overbuilding of inventory which will require a decrease in production.  Because the overshoot is 
bigger, the decrease will also be bigger. 

Extensions and Exercises 

If you look at the model structure we have developed you will see that it fails the Reality Check 
"Without Inventory we can't ship."  Try to develop a structure to correct this flaw.  You will need to 
create an explicit shipment variable and use a nonlinear function (Lookups are often used here) to 
constrain shipments.  
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3 Project Dynamics 

A variety of activities, from writing term papers to building nuclear power plants, have very similar 
dynamic characteristics.  These projects have an initial goal, a lot of work towards the goal, and more 
or less successful completion of the goal.  Projects often fail to achieve the expected goal, and cost 
overruns, time overruns, and poor quality, are common. 

In this chapter, we will develop a model to help understand the processes involved in getting a project 
done.  This project model focuses on the design of a new building, although the model is directly 
applicable to other activities such as designing a new product, preparing a presentation, developing 
software, or building a space shuttle.  

In conceptualizing and creating this model, we will use an iterative approach.  We will start with the 
simplest structure that is relevant to this problem, and continually refine it.  The iterative technique is  
useful because it prevents a situation in which you have completed a large, complex model, but the 
simulation results do not make sense.  You will be simulating at every step, and seeing the effects of 
new model structure as it is added. 

In developing this model, we will be depending on the computer to continually give us feedback on the 
consequences of changing structure.  While the computer is good at this, it is also important to think 
about what we are doing.  Before any simulation experiment is run you should ask yourself what you 
expect the results to be. If you are surprised, find out why.  If you are right, make sure it is for the right 
reasons. To keep yourself honest, it is helpful to write down predictions about each run beforehand; 
many experienced modelers keep a notebook documenting model changes, surprising behavior, and 
important insights as they work. 

Task Accomplishment (project1.mdl) 

The most fundamental characteristic of any project is that there is something to do and it gets done, at 
least partially.  We start with two Levels and the flow between them: 

Work
Remaining

Work
Accomplishedwork flow

initial project definition

 

This is a complete model.  We set initial project definition at 1000 and work flow at 
100.  This is a project that should take 10 months.  Just to make sure we have time to get done we run 
the project for 24 months with TIME STEP at .0625  (this is 1/16th of a month and should be 
sufficiently fine to trap changes in project activity).  The equations are: 

Work Remaining = INTEG(
-work flow,

initial project definition)
Units: Drawing

Work Accomplished = INTEG(
work flow,

0)
Units: Drawing

initial project definition = 1000
Units: Drawing
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work flow = 100
Units: Drawing/Month

The units of measure — Drawing — are appropriate for the design of a building.  Tasks, lines of 
code, or other measures could also be used.  It is important to remember that we are dealing with an 
aggregate representation of a project.  In reality a project is not made up of a bunch of equally sized 
components, but a combination of big and little things.  We are representing averages in our equations.  
It is very important to keep this in mind, especially when you are working on a real problem. 

When we simulate this model we see the following: 

Work Remaining and Work Accomplished
4,000

-4,000

0  12  24
Time (Month)

Work Remaining - Project1 Drawing
Work Accomplished - Project1 Drawing

 

After 10 months Work Remaining is 0, but things continue to get done.  There is no logic for 
shutting the project down. 

Stopping Work (project2.mdl) 

There are two reasonable ways to shut down the project model.  One is simply to stop simulating when 
the project is done.  You can do this by writing a different equation for FINAL TIME.  The approach 
we will take here is to stop activity on project completion.  We add in the concept project is
done and make a connection from that to work flow. 

Work
Remaining

Work
Accomplished

work flow

initial project definition project is done

 

The dependence of  project is done on Work Accomplished rather than Work
Remaining will provide us with a mechanism for descoping the project if there are schedule or 
budget problems.  We add the equations: 

project is done = IF THEN ELSE(Work Accomplished >=
initial project definition,1,0)

Units: Dmnl

work flow = IF THEN ELSE(project is done,0,100)
Units: Drawing/Month

This yields the results: 



 21

Work Accomplished and Work Remaining
1,000

0

0  12  24
Time (Month)

Work Accomplished - project2 Drawing
Work Remaining - project2 Drawing

 
Finished on time, and on budget.  A project manager's dream, and the basic model used in most project 
management software.   

Integration Techniques 
Before we proceed, a note on integration techniques is in order.  In this model we have introduced an 
abrupt work stop.  It is best, with project models, to stick to Euler integration.  A consequence of this, 
which we will see later in this model, is that there will usually be some overshoot.  We might do 101% 
of the work, for example.  These overshoots are not problematic, and are of little conceptual 
significance, though for presentation reasons it is sometimes desirable to correct them.  We will, in this 
chapter, focus on the important conceptual problems, not the details of computation. See Chapter 8 for 
more detail on integration methods. 

Errors and Rework (project3.mdl) 

So far we have assumed that the work being done is being done without error.  In general this is not 
true.  There are a number of places where errors can occur, including miscommunication among 
personnel, technical oversights and just plain mistakes.  When errors occur they are not, however, 
immediately discovered.  Errors remain undetected until there is a review or integration activity that 
brings them to light.   

rework discovery rate

time to detect errors

Undiscovered
Rework

work quality

project is doneinitial project definition

work flow
Work

Accomplished
Work

Remaining

 
We have set up the diagram to show a parallel flow of work with errors accumulating into 
Undiscovered Rework and a flow back from Work Accomplished into Work
Remaining.  (An alternative formulation would be to split the workflow into good and bad and then 
have the bad work flow back to the work to be done.  If we did this, the Work Accomplished concept 
would need to be replaced by the sum of the good and bad work.)

Drawing the Diagram 
To draw the above diagram you need to go through several steps.  Working only on the Levels and 
flows start with: 
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Work
Remaining

Work
Accomplishedwork flow

Undiscovered
Rework

 
To create the unnamed valve just press the Esc key instead of typing in a name for it.  Use the delete 
tool to remove the cloud from the diagram.  You may also need to move the unnamed valve to the right 
of where it is first placed as shown above.  Now select the Rate tool and click on the valve labeled 
work flow.  Move to the right (but not down) and, holding down the shift key, click again, now 
move straight down to the same vertical position as the unnamed valve and, holding down the shift 
key, click again.  Finally release the shift key and click on the unnamed valve.  You should have: 

Work
Remaining

Work
Accomplishedwork flow

Undiscovered
Rework

 
What you have may not look quite so bad depending on the relative placement of the two valves. To 
remove the unwanted arrowhead Right-Click or Control-Click on the arrowhead and uncheck the 
Arrowhead checkbox in the Arrow Options dialog.  

Now draw the rate from Undiscovered Rework to Work Remaining by clicking on 
Undiscovered Rework then, holding down the Shift Key clicking straight to the right, and again 
to the right and down.  Move left to the position you want the rework discovery rate to appear 
and Click while holding down the Control key.  Now move straight to the left and, holding down the 
Shift key, Click.  Move straight up to the position of Work Remaining and, holding down the Shift 
Key, click again. Finally, let go of the Shift key and click on Work Remaining.  Name the valve 
rework discovery.  You should have: 

Work
Remaining

Work
Accomplishedwork flow

Undiscovered
Rework

rework discovery
 

To create the final pipe use the rate Tool to start from Work Accomplished.  Move directly right 
to the same horizontal position that the existing pipe turns at and, holding down the shift key, click.  
Now move down to the bottom turn of the existing pipe and, holding down the shift key, click  Finally 
release the Shift key and click on the valve above rework discovery.   

You will probably need to select the Move/Size tool and drag the pipes around a little bit to get them to 
line up properly.   

NOTE  When you draw the last pipe from Work Accomplished to rework discovery 
Vensim, detecting a flow from a Level to a Rate, reverses the direction of causality and removes the 
arrowhead.  Thus, you could have gotten the same thing by starting at rework discovery    then 
unchecking the Arrowhead box on the Arrow Options dialog. 

Putting it Together 
With the diagram in place we need to modify a number of equations, and add some others.  The 
changed and new equations are: 
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rework discovery rate = Undiscovered Rework/time to detect errors
Units: Drawing/Month

time to detect errors = 3
Units: Month

The selection of a value for time to detect errors requires consideration of the different 
types of errors that occur and who is likely to find them.  This is unlikely to be truly constant over the 
whole project, and we will address this later on.  For the time being, an average of 2 to 3 months seems 
reasonable. 

Undiscovered Rework = INTEG(
work flow*(1-WORK QUALITY)- rework discovery rate,

0)
Units: Drawing

Work Accomplished = INTEG(
work flow - rework discovery rate,

0)
Units: Drawing

WORK QUALITY = 0.9
Units: Dmnl

Work Remaining = INTEG(
rework discovery rate - work flow,

initial project definition)
Units: Drawing

With these additions we get the following behavior: 

Work Accomplished, Work Remaining and Work Flow
150 Drawing/Month

1,200 Drawing

0 Drawing/Month
0 Drawing

0  12  24
Time (Month)

work flow - Project3 Drawing/Month
Work Accomplished - Project3 Drawing
Work Remaining - Project3 Drawing

 
There are two things to notice.  First the project takes a little longer, because not all work is done 
correctly the first time.  Secondly, after the project ends there are a number of repeated resurgences of 
activity as undiscovered rework comes to light and needs to be redone.   

Rework Discovery (project4.mdl) 

If we look at Undiscovered Rework, we see that it is peaking as the project ends: 
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Graph for rework discovery rate

10

0
0  12  24

Time (Month)

rework discovery rate - Project3 Drawing/Month
 

While Undiscovered Rework is inherently unobservable, it is true that the final stages of a 
project tend to see a big increase in rework discovery.  It is very much like finally putting the pieces of 
a puzzle together:  At the end it becomes quite obvious which pieces are missing or the wrong shape.  
Examples of problems that can occur are plumbing systems that depend on nonexistent access 
corridors and  ventilation shafts that are the wrong size for the planned equipment. 

We can represent these concepts simply by making time to detect errors depend on the state 
of completion of the project. 

time to detect
error lookup

fraction complete

rework discovery rate
time to detect errors

Undiscovered
Rework

work quality

project is done

initial project definition

work flow

Work
Accomplished

Work
Remaining

 

Here we have also added in the variable fraction complete and changed project is
done so that it depends on the new variable.  The new and changed equations are: 

fraction complete = Work Accomplished/initial project definition
Units: Dmnl

project is done = IF THEN ELSE(fraction complete >= 1,1,0)
Units: Dmnl

time to detect errors = time to detect error lookup(
fraction complete)

Units: Month

time to detect error lookup ((0,5),(0.5,3),(1,0.5))
Units: Month

We are using a lookup function on fraction complete to drive time to detect errors 
to a much smaller value toward the end of the project.  Simulating now gives us: 
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Project3
Project4
Undiscovered Rework

40

20

0
rework discovery rate

20

10

0
work flow

100

50

0
0 12 24

Time (Month)  
The project ends slightly later, but there is very little rework remaining at the time of completion.   

You will notice during simulation that you receive warning messages about being above time to
detect error lookup computing time to detect errors.  This happens because the 
amount of work done slightly exceeds the original amount of work to do.  This is something that was 
expected because of the discontinuous way the project is stopped.  This not a conceptual problem so 
we leave it alone for now. 

Schedule (project5.mdl) 

So far we have been representing work flow as a constant with no feedback from schedule.  The 
purpose of project management is to keep projects on schedule.  To do this it is necessary to know 
what the schedule is, and adjust resources to meet that schedule.   

If we have a completion date scheduled, we can compute the time we have left.  Since we know the 
amount of work remaining, we can further determine how fast we need to work to meet the schedule.  
For compactness and clarity, we will represent only the structure that is changing from now on. 

work flow
<Time>

scheduled completion date Work
Remaining

scheduled time remaining

max work flow
required work flow <project is done>

 
The equations for this are: 

required work flow = MIN(max work flow,
XIDZ(Work Remaining,scheduled time remaining,max work flow))

Units: Drawing/Month

This formulation keeps required work flow less then max work flow using the MIN 
(minimum) function.  The XIDZ (X If Divide by Zero) function divides Work Remaining by 
scheduled time remaining unless scheduled time remaining is 0, when it 
returns max work flow.  It is important to use this function since dividing by zero makes no sense 
and will be reported as an error by Vensim. 

scheduled time remaining = MAX(0,scheduled completion date - Time)
Units: Month

scheduled completion date = 10
Units: Month

max work flow = 500
Units: Drawing/Month

work flow = IF THEN ELSE(project is done,0,required work flow)
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Units: Drawing/Month

Simulation of the model now gives: 

Work Accomplishment, Work Remaining and work flow
600 Drawing/Month

1,200 Drawing

0 Drawing/Month
0 Drawing

0  12  24
Time (Month)

work flow - Project5 Drawing/Month
Work Accomplished - Project5 Drawing
Work Remaining - Project5 Drawing

 

The project is completed on time.  work flow drifts slowly upward, then shows a sudden jump right 
at the end to finish the project on time. 

Workforce and Hiring (project6.mdl) 

So far we have treated work flow as whatever is necessary to get the work done, subject to 
limitations.  In order to get work done, however, resources are necessary.  In this model we are 
focusing on effort, and resources are people.  Whether these people are hired for the job, or assigned 
internally within an organization, they are required to get the job done.   

The simplest formulation for workforce is the same as that used in the Workforce-Inventory model.  In 
this case the desired amount of production is that required to complete the project on time: 

<Work
Remaining>

<scheduled time remaining>

productivity

<max work flow>

<project is done>

work flow

required workforce

required work flow

time to adjust workforce

net hire rate
Workforce

 

The formulation for required workflow has been changed so that it will go to 0 when the project 
is completed.  The new and changed equations are: 

net hire rate = (required workforce - Workforce)/time to adjust
workforce

Units: Person/Month

Productivity = 1
Drawing/Person/Month

required work flow =IF THEN ELSE(project is done,0,
XIDZ(Work Remaining,scheduled time remaining,max work flow))

Units: Drawing/Month

required workforce = required workflow/productivity
Units: Person

time to adjust workforce = 2
Units: Month

Workforce = INTEG(
net hire rate,
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0)
Units: Person

The project starts off without anyone working on it, and people are brought on relatively quickly to get 
the work done.  This is the most straightforward view of labor requirements and acquisition.  It would 
also be possible to use a planned work intensity profile, involving a gentle ramp up of effort at the 
beginning and a ramp down at the end.  

The model modified in this way produces: 

Work Flow and Workforce
400 Drawing/Month
400 Person

0 Drawing/Month
0 Person

0   4   8  12  16  20  24
Time (Month)

work flow - Project6 Drawing/Month
Workforce - Project6 Person

 

Workforce quickly climbs to 100 people, then climbs slowly until it starts a dramatic increase near 
the end of the project.  There is also a resurgence of project activity after the end of the project, we deal 
with both of these unrealistic behaviors together. 

Willingness to change workforce (project7.mdl) 

As the end of the project approaches it is unlikely that more people will be added.  As the project 
progresses the project team tends to stabilize in terms of positions and activities, and, once the project 
is 80% complete, it is rarely appropriate to make further changes in staffing levels. 

We capture this dynamic using willingness to change workforce.   

<willingness to change
workforce lookup>

<fraction complete>

willingness to change workforce

<Work
Remaining>

<scheduled time remaining>

productivity

max work flow

<project is done>

work flow

required workforce
required work flow

time to adjust workforce

net hire rate
Workforce

 
With the new and changed equations: 

required workforce = IF THEN ELSE(
Workforce < required work flow/productivity,
willingness to change workforce*required work flow/productivity +

(1-willingness to change workforce)*Workforce,
required work flow/productivity)

Units: Dmnl

This equation allows workforce reductions, but does not allow workforce increases late in the project.   

willingness to change workforce =
willingness to change workforce lookup(fraction complete)



 28 

Units: Dmnl

Graph Lookup - willingness to change workforce lookup

1

0
0 1

 
willingness to change workforce lookup

((0,1),(0.5,0.8),(0.8,0),(1,0) )
Units: Dmnl

Project Restarts 
It is possible for a project to start up again after an apparently successful completion because of the 
discovery of a number of problems.  Such a situation is, however, somewhat uncommon and occurs 
only after significant problem discoveries. 

For the model we are working with here this problem is not serious, since it is the dynamics before the 
project is completed that are of interest.  In multistage projects, where more than one activity is taking 
place and there is resource sharing between activities, restarting a task can be a significant problem.   

The way to represent this is almost the same as the formulation of the thermostat problem discussed in 
Chapter  8.  If the project has been declared complete, we do not restart it unless things get very bad.   

project is done = IF THEN ELSE(project was done :AND:
fraction complete > restart fraction,1,
IF THEN ELSE(fraction complete >= 1,1,0))

Units: Dmnl

project was done = DELAY_FIXED(project is done,0,0)
Units: Dmnl

restart fraction = 0.9
Units: Dmnl

Resulting Behavior 
Work Accomplished, Work Remaining and work flow

200 Drawing/Month
1,200 Drawing

0 Drawing/Month
0 Drawing

0  12  24
Time (Month)

work flow - Project7 Drawing/Month
Work Accomplished - Project7 Drawing
Work Remaining - Project7 Drawing

 
The project is a finishing a little later, with activity flat toward the end.  After the project is finished 
there is still a small amount of rework discovered.  This never gets large enough to trigger a project 
restart and remains unaddressed. 

Schedule Pressure (project8.mdl) 

By introducing the effective freeze on workforce toward the end of the project we have removed the 
influence of the schedule on activity.  In the final stage of the project people simply continue to work 
at a normal speedand finish when they finish.  While staffing levels may be constant, it is rarely true 
that the intensity of effort is constant. 
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<eff fatigue quality lookup>

<eff fatigue productivity lookup><scheduled time remaining>

<project is done>

max schedule pressure

<required workforce>

time to average overtime

normal work quality

eff fatigue quality

eff fatigue productivity

Average
Overtime

overtime

<overtime lookup>

work quality

productivity

normal productivitynormal workflow

<required work flow>

schedule pressure

 
Here we use schedule pressure to drive overtime, with overtime directly affecting 
productivity.  Average Overtime is used as a measure of fatigue resulting from prolonged 
overwork.  Fatigue lowers productivity and quality. 

The new and changed equations are: 

Average Overtime = INTEG(

(overtime - Average Overtime)/time to average overtime,
overtime)

Units: Dmnl

Note that this formulation is the same as Average overtime = SMOOTH(overtime, time
to average overtime).  As a general practice, the use of dynamic functions such as SMOOTH 
is avoided because they can introduce behavior that is difficult to determine the causes of.  It is good 
practice to use dynamic function only where they result in substantially less clutter. 

eff fatigue productivity = eff fatigue productivity lookup(
Average Overtime)

Units: Dmnl
Graph Lookup - eff fatigue productivity lookup 

2

0
0 2

eff fatigue productivity lookup((0,1.2),(1,1),(1.2,0.9),(2,0.1))

Units: Dmnl

eff fatigue quality = eff fatigue quality lookup(Average Overtime)
Units: Dmnl

Graph Lookup - eff fatigue quality lookup  

2

0
0 2

eff fatigue quality lookup((0,1.1),(1,1),(1.2,0.9),(1.5,0.5),
(2,0.4) )

Units: Dmnl

max schedule pressure = 5
Units: Dmnl

normal productivity = 1
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Units: Drawing/Person/Month

normal work quality = 0.9
Units: Dmnl

normal workflow = MIN(max work flow, normal productivity * required
workforce)

Units: Drawing/Month

required workforce = IF THEN ELSE(
Workforce < required work flow/normal productivity,
willingness to change workforce*required work flow/ normal
productivity + (1 - willingness to change workforce) * Workforce,
required work flow/normal productivity)

Units: Person

Note that this formulation has been changed to use normal productivity instead of  
productivity.  If this were not the case, you would have a situation in which people were 
producing above average because of overtime, but this high output was considered the norm for 
bringing new people on.  Depending on the project, this might actually be realistic.  In this case, 
however, it would be necessary to use not productivity, but a perception of average productivity since 
productivity is not directly observable. 

overtime = overtime lookup(schedule pressure)
Units: Dmnl

Graph Lookup - overtime lookup   

2

0.6
0 6

 
overtime lookup((0,0.7),(1,1),(1.2,1.2),(1.5,1.4),(2,1.45),(5,1.5) )
Units: Dmnl

productivity = normal productivity * overtime * eff fatigue
productivity

Units: Dmnl

schedule pressure = IF THEN ELSE(scheduled time remaining<= 0 :AND:
:NOT: project is done,max schedule pressure,
ZIDZ(required work flow,normal workflow))

Units: Dmnl

The ZIDZ function is used because at the beginning of the simulation normal workflow is 0.  
Once the schedule is overrun schedule pressure goes to its maximum value until the time of 
completion. 

time to average overtime = 2
Units: Month

work quality = normal work quality * eff fatigue quality
Units: Dmnl

With these changes in place we see the following behavior: 
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Work Accomplished, Work Remaining and work flow
200 Drawing/Month

1,200 Drawing

0 Drawing/Month
0 Drawing

0   4   8  12  16  20  24
Time (Month)

work flow - Project8 Drawing/Month
Work Accomplished - Project8 Drawing
Work Remaining - Project8 Drawing

 
The peak in activity toward the end is accomplished with overtime.  The quality toward the end does 
slip, and there is a small but noticeable amount of rework discovered after the project is completed. 

Labor Mix (project9.mdl) 

One thing that is immediately noticeable in the above simulations is that even after the project is over 
there are lots of people still assigned to it.  While some amount of wind-down and cleanup makes 
sense, it is likely to occur quite quickly.  This suggests that it is appropriate to have different time 
constants for the acquisition and dismissal of personnel. 

The second thing that warrants consideration is the preparedness of people to do work on the project.  
We have assumed that every person brought on is immediately productive.  While the people being 
brought on to the project are assumed skilled, they will require some time to be briefed and brought up 
to speed on their responsibilities.   

Veteran
Workforce

New
Workforce

total workforce

dismissals

hires

<willingness to change
workforce lookup>

briefing completions

normal productivity

<fraction complete>

willingness to change workforce
<Work

Remaining><scheduled time remaining>

<productivity>

<max work flow>

<project is done>

work flow

required workforce required work flow

time to increase workforce
briefing time

dismissal time

<total workforce>

 

The workforce is now broken out into two components.  People who are hired come into the New
Workforce pool and after sufficient briefing become veterans.  Only veterans are actually 
contributing to workflow, so there is a significant burden to having too many new people.  In 
computing requirement, on the other hand, it is total workforce against which a comparison to 
requirements is being made. 

While hires flow only into New Workforce, dismissals are drawn proportionally from both New
Workforce and Veteran Workforce.  dismissal time is also set to be significantly shorter 
than time to increase workforce. 

The new and changed equations are: 

briefing completions = New Workforce/briefing time
Units: Person/Month

briefing time = 2
Units: Month
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dismissal time = 0.5
Units: Month

dismissals = IF THEN ELSE(required workforce < total workforce,
(total workforce - required workforce)/dismissal time,0)

Units: Person/Month

hires = IF THEN ELSE(required workforce > total workforce,
(required workforce-total workforce)/time to increase workforce,0)

Units: Person/Month

New Workforce = INTEG(
hires-briefing completions-dismissals * ZIDZ(New Workforce,total
workforce),

0)
Units: Person

Note the use of ZIDZ to prevent from dividing by zero when total workforce is zero. 

time to increase workforce = 2
Units: Month

total workforce = New Workforce + Veteran Workforce
Units: Person

Veteran Workforce = INTEG(
briefing completions - dismissals * ZIDZ(Veteran Workforce,total
workforce),

0)
Units: Person

And this results in the behavior: 

Workforce and work flow
300 Drawing/Month
300 Person

0 Drawing/Month
0 Person

0   4   8  12  16  20  24
Time (Month)

work flow - Project9 Drawing/Month
total workforce - Project9 Person

 

The big things to notice here are the divergence of work flow from total work force, and the 
larger number of people eventually needed. 

Policy Experiments (project.mdl) 

We have, through a series of small steps, developed an interesting project model.  We now want to use 
this model to test some policy ideas.  In order to do this we will first add in some accounting equations 
to measure total cost and final completion date.  Then we will formulate an alternative hiring policy to 
see if performance can be improved. 

Accounting Equations 
It is often useful to add in summary measurement equations for a model  The most interesting 
measures in this example are total cumulative cost, and project completion time. 
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<Time><project was done>

Project
Completion

Time

wage rate<total workforce>

cost

Cumulative
Cost

 
With Equations: 

cost = total workforce * labor cost
Units: $/Month

Cumulative Cost = INTEG(
cost,

0)
Units: $

Project Completion Time = SAMPLE IF TRUE(project was done =
0,Time,0)

Units: Month

The function SAMPLE IF TRUE is used to return Time until project was done is true and stay 
constant thereafter.  This formulation will capture restarts that might occur because of low quality. 

WAGE RATE = 6000
Units: $/Month/Person

WAGE RATE  includes benefits. 

Workforce Cap 
As a policy we can experiment with different caps on total staffing.  By simple arithmetic with 1,000 
drawings to complete and a productivity of 1, 100 people should be able to finish the job in 10 months.  
There were twice that many people at the end of the last simulation, so maybe we can do better. We 
want to reformulate required workforce, but the current equation for this is already quite 
involved.  To clarify things rename required workforce as indicated workforce.  Now 
add in a new variable called required workforce. 

indicated workforce

max workforcenormal productivity

willingness to
change workforce

required workforce required work flow

<total workforce>

 
indicated workforce will be used where required workforce used to be used and 
required   workforce will be computed differently.  Note that when you rename required
workforce Vensim automatically makes sure it is renamed in the equations it is used in.  Thus you 
only need to write new equations for: 

indicated workforce = IF THEN ELSE(total workforce <
required workforce,
willingness to change workforce*required workforce +
(1-willingness to change workforce)*total workforce,
required workforce)

Units: Person

max workforce = 1000
Units: People

required workforce = MIN(max workforce,
required workflow/normal productivity)
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Units: Person

max workforce is initially set very large to allow a non binding policy.  If you simulate the model 
with these changes the same behavior is generated.   

Viewing Terminal Values 
The two measurements we set up are formulated so that their terminal values are of interest.  To review 
terminal values we will use the Table tool.  Set the Time Axis tab of the Control Panel to use only a 
very small range (see Chapter 12 of the Reference Manual).  Clicking on the Table tool generates: 

 
If you have more than one run loaded you will probably see some blank lines since these variables do 
not appear in the other models. 

The project cost $8.85 million and was completed at time 10.75.  

Labor Cap 
Now do an experimental simulation in which labor is capped at 150.  You should get the results: 

Work Accomplished, Work Remaining and work flow
200 Drawing/Month

1,200 Drawing

0 Drawing/Month
0 Drawing

0  12  24
Time (Month)

work flow - Cap150 Drawing/Month
Work Accomplished - Cap150 Drawing
Work Remaining - Cap150 Drawing

 
The project stretches out a little bit.  If we look at cost, however, the results are a little surprising.  
Cumulative Cost is higher with the cap in place.  Lets look at why: 

Select Cumulative Cost into the Workbench and click on the Causes Strip tool (be sure to go to 
the Time Axis Control and click on the Reset button).  If you don't have the right runs loaded go to the 
Datasets Control (Control>Datasets command): 

Now clicking on the Causes Strip graph shows the causes of Cumulative Cost. 

Cap150
Project
Cumulative Cost

10 M
5 M

0
cost

2 M
1 M

0
0 12 24

Time (Month)  
Costs do not rise as high, but they continue for longer and add up to more.  Now select 
productivity and click the Causes Strip graph: 
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Cap150
Project
productivity

2

0
eff fatigue productivity

2

.6
overtime

2

0
0 12 24

Time (Month)    

Cap150
Project
work quality

1
.7
.4

eff fatigue quality
2

1.2
.4

0 12 24
Time (Month)  

productivity never rises significantly.  Schedule pressure comes in early, and leaves a fatigued 
workforce.  Quality is also much lower.  As the base model is configured the project finishes in a flurry 
of activity before anyone has had time to be burned out.   

Summary 

We have, in this chapter, gone through a step by step process of building a model by continually 
adding small pieces to an existing model.  The advantage of this method is that you always have a 
working model.  The disadvantage is that you can lose sight of the forest for the trees.  It is always a 
difficult problem to determine when to stop adding.  If you are not taking a broad view it is possible to 
add more and more detail without improving understanding.  Building in small steps is a powerful 
approach, but you need review progress from time to time to see if the steps are taking you in the 
direction you want to go. 
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4 The Growth of a Field 

New products and new technologies, when released into intellectual and commercial marketplaces, can 
display a wide variety of behavior.  There are fads, unmitigated disasters, amazing takeoffs that go bust 
and, sadly only rarely, real long term roaring successes.  Every new product and technology introduced 
is unique, but some dynamic behaviors are commonplace. 

For concreteness we will look at the field of System Dynamics, and attempt to understand the role of a 
technology, such as Vensim, in the development of the field.  We will start with a background 
description of the problem, put forward a number of hypotheses about what is going on and what 
policies might be helpful.  We will then start building a model to help us test these hypotheses. 

The model-building process we will use in this chapter is one of articulating and formalizing theories, 
and then attempting to incorporate them into a unified model.  This process is usually not smooth, 
since many theories are ill formed and internally inconsistent.  Trying to formalize an internally 
inconsistent theory will illuminate the problem; however, resolving the conflicting ideas so that they 
make sense can be difficult.  Another common difficulty with this model-building process is that two 
theories can not always fit into a single framework.  In some cases, it is easier to develop different 
models for different theories and then compare the models on the basis of behavior, Reality Checks 
and data. 

Background 

In 1956 Jay W. Forrester began applying the principles of feedback and control to the study of 
economic and management problems.  Forrester felt that work in the field was fragmented and focused 
on problems that would not provide the leverage required to achieve truly superior performance.  Thus 
he pioneered the field of System Dynamics. 

Since 1956 the field has grown, but more slowly than expected by most who have followed the work.  
In looking at the growth of the field we can generate a number of candidate hypotheses. 

Hypotheses 
• Growth is exponential but slow  (things are good). 

• There is a shortage of qualified professors   (increase supply). 

• There are not enough textbooks   (standardize training). 

• Only the simplest models can ever be widely disseminated  (change goals). 

• We need technology to help people understand models  (improve accessibility). 

• People need to be reeducated to think systemically  (increase demand). 

• Most people cannot build models   (potential market is small). 

• We need more skilled practitioners   (improve practice quality). 

• It is just too hard    (make it easier). 

• There is a need/skill mismatch   (reorient training). 

• We need to publicize successful applications  (increase marketing). 
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The Basic Diffusion Process (sdgrow1.mdl) 

Regardless of which hypothesis we consider, we need to think about how many people are using the 
technology.  The process starts with the work of several people, then spreads.   Holding this very 
simple thought we can start with: 

initial practitioners

adoption fraction

practitioner with
non practitioner

contacts

total population

practitioner prevalence
contact rate

non practitioner
contacts

adoptions
PractitionersNon

Practitioners

 

There are two pools of people: Practitioners and Non Practitioners (we do our best to 
keep the language neutral here).  These people are all going to conferences, attending meetings and 
bumping into one another on the street.  Since the process of adoption requires that someone instill the 
idea of the technology into someone else, we are interested in the frequency with which someone who 
is not a practitioner encounters someone who is a practitioner.  Therefore we start with non
practitioner contacts with anyone, and then multiply by the fraction of people who are 
practitioners.   

practitioner with non practitioner contacts represents contacts between someone 
who is practicing and someone who is not practicing.  There is a chance that, as the result of this 
meeting, the non practitioner will take up practice.  The probability that this happens is called the 
adoption fraction. 

The equations for the above model are: 

adoption fraction = 0.005
Units: Dmnl

adoptions = practitioner with non practitioner contacts *
adoption fraction

Units: Person/Year

contact rate = 100
Units: 1/Year

initial practitioners = 10
Units: Person

non practitioner contacts = Non Practitioners * contact rate
Units: Person/Year

Non Practitioners = INTEG(
- adoptions,

1e+007)
Units: Person

Note that we start the model with 10 million people.  This is intended to represent the number of 
academics and skilled professionals for whom this type of work is relevant.  This number is an open 
issue for discussion, though we will not be addressing it in this chapter. 

practitioner prevalence = Practitioners/total population
Units: Dmnl

practitioner with non practitioner contacts =
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non practitioner contacts * practitioner prevalence
Units: Person/Year

Practitioners = INTEG(
adoptions,

initial practitioners)
Units: Person

total population = Non Practitioners + Practitioners
Units: Person

The model is run from the year 1960 to the year 2010 with TIME STEP at .125.  This model generates 
the following behavior: 

Practitioners and Adoptions

12 M Person
2 M Person/Year

0 Person
0 Person/Year

1960 1985 2010
Time (Year)

Practitioners - SDGrow1 Person
adoptions - SDGrow1 Person/Year

 
The behavior of the model is quite sensitive to the parameters chosen.  For example, if we let 
adoption fraction taken on the values .01,  .005 and .0025 we get: 

Graph for Practitioners

10 M

10
1960 1985 2010

Time (Year)

Practitioners - SDG01 Person
Practitioners - SDG005 Person
Practitioners - SDG0025 Person

 
For higher values like .01, the number of practitioners grows rapidly and saturates early as the total 
population adopts the method. On the other hand, for a value of .0025 the number of practitioners 
barely registers on this scale.  One interesting experiment to do is to lower the adoption fraction even 
further to .001 and see how long it takes before saturation occurs. 

A Note on Behavior 

One of the most important features of exponential growth is that there is, seemingly, very little activity 
for a long period of time, and then an explosion.  In this model the explosion is contained because the 
conserved flow of Adoption into Practitioners also depletes the source of growth, the stock of 
Non Practitioners.  If we break this link in our model, replacing the equation for the level 
Non Practitioners with a constant: 

Non Practitioners = 1E7

and, to make it true exponential growth: 
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total population = 1E7

We remove the constraint on growth.   

SDGrow1
SDGrowP
Practitioners

60 B

30 B

0
1960 1985 2010

Time (Year)      

SDGrow1
SDGrowP
Practitioners

8 M

4 M

0
1960 1975 1990

Time (Year)  
The models diverge after 1989 very dramatically - pure exponential growth makes the diffusion 
process look like a flat line at 0.  Before 1988, however, the two models give very nearly identical 
results.  The graph on the right is a close-up of 1960 to 1990, and there is almost no difference between 
the two models until near the end of this time. 

For this model, the implied growth rate is just 

contact rate * adoption fraction = 100 * .005 = .5

or 50%/year.  With adoption fraction set at .001 there is only a 10%/year potential growth rate, 
thus the big difference in takeoff. 

flu.mdl) 

The above model is a very generic core for all diffusion processes.  Consider new product sales 
(sales.mdl): 

initial customers

sales fraction

customer with non
customer contacts

total market

customer prevalence
contact rate

non customer
contacts

sales
CustomersPotential

Customers

 

adoptions has become sales, and if you recall the behavior of adoptions, this means that they 
are small for a long time, then they explode, and immediately collapse.  Many companies, such as 
Atari, have gone through this. Even though the process is generic, they surprised everyone (especially 
themselves) when their amazing success went bad. 

Or consider the spread of a disease (flu.mdl) 

initial infected

infection rate

healthy contacts with
infected individuals

total population

fraction population infected
contact rate

healthy contacts

infections

Infected
Individuals

Healthy
Individuals
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Both of these are exactly the same model, with just the names changed, and both make sense.  In order 
to elaborate either of these you might want to make different changes - adding distinctions between 
symptomatic, asymptomatic, contagious and non-contagious flu victims, for example.  But even as you 
add structure you will find that strong parallels often remain.  

The Adoption Process (sdgrow2.mdl) 

We have seen how important the adoption rate is:  if it is too low, a technology will take so long to 
diffuse that it is likely to be lost in the wash of other events and technologies.  The way we have 
modeled it, however, adoption is just a matter of picking up the tool and going to work.  This is not, 
unfortunately, the way life works.  After deciding that a technology is good and worth pursuing, it is 
necessary to spend time and effort to become capable enough to use the technology.   

Instead of just looking at Non Practitioners and Practitioners, we can look at Non
Practitioners, Training Practitioners, New Practitioners and Experienced
Practitioners.  Practitioners can then be reformulated as the sum of New
Practitioners and Experienced Practitioners.  Experienced Practitioners 
can also provide teaching and training to speed the transition from Training Practitioners to 
New Practitioners to Experienced Practitioners. 

Non
Practitioners

New
Practitioners

adoptions

non practitioner
contacts

contact rate

practitioner prevalence

total population

practitioner with
non practitioner

contacts

adoption
fraction initial practitioners

Training
Practitioners

Experienced
Practitioners

self training time self experience time

practitioners

graduations maturations

training fraction supervision fractionapplication fraction

training productivity supervision productivity
min training time min experience time

 
This diagram is a little bit busier, but is the same basic structure as the first model.  There are six 
constants that determine the speed with which people can move through training and gaining 
experience.  self training time is the time required for a person with no formal training to 
become sufficiently proficient to be a practitioner.  min training time is the time required for a 
person with lots of formal training to become proficient.  As Experienced Practitioners 
devote time to training, the average training time moves from self training time, to min
training time according to training productivity.  The formulation for people 
becoming experienced is exactly parallel. 

The equations for this model are: 

adoption fraction = 0.005
Units: Dmnl

adoptions = practitioner with non practitioner contacts *
adoption fraction

Units: Person/Year

application fraction = INITIAL(1 - supervision fraction -
training fraction)

Units: Dmnl
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This represents the fraction of time experienced people devote to application  (doing research, 
publishing and helping solve problems) and not training others.  This is not used in this model, but will 
be used in the next refinement. 

contact rate = 100
Units: 1/Year

Experienced Practitioners = INTEG(maturations,initial practitioners)
Units: Person

graduations = MIN(Training Practitioners/min training time,
Training Practitioners/self training time + Experienced
Practitioners * training fraction * training productivity)

Units: Person/Year

Any addition of people devoted to training immediately adds to graduations until people are 
coming out as fast as they can be expected to at which point adding more trainers has no effect. 

initial practitioners = 10
Units: Person

maturations = MIN(New Practitioners/min experience time,
New Practitioners/self experience time + Experienced
Practitioners * supervision fraction * supervision productivity)

Units: Person/Year

min experience time = 1
Units: Year

min training time = 0.25
Units: Year

New Practitioners = INTEG(
graduations - maturations,

0)
Units: Person

non practitioner contacts = Non Practitioners * contact rate
Units: Person/Year

Non Practitioners = INTEG(
- adoptions,

1e+007)
Units: Person

practitioner prevalence = practitioners/total population
Units: Dmnl

practitioner with non practitioner contacts =
non practitioner contacts * practitioner prevalence

Units: Person/Year

practitioners = New Practitioners + Experienced Practitioners
Units: Person

self experience time = 4
Units: Year

self training time = 2
Units: Year

supervision fraction = 0
Units: Dmnl

supervision productivity = 4
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Units: 1/Year

The supervision productivity is the number of people per year an experienced practitioner 
can train.   Thus the units are (Person/Year)/Person or 1/Year. 

total population = Non Practitioners + Training Practitioners +
practitioners

Units: Person

training fraction = 0
Units: Dmnl

Training Practitioners = INTEG(
adoptions - graduations,

0)
Units: Person

training productivity = 20
Units: 1/Year

If we simulate this model at the three extremes, with application fraction = 1 (all effort is 
devoted to work in the field, and new practitioners must train themselves), training fraction =
1 (all effort is devoted to training novices) and supervision fraction = 1 (all effort is 
devoted to generating experienced practitioners) we get the following behavior: 

AllTrain
AllSup
AllApp
practitioners

10 M

0
Experienced Practitioners

10 M

0
New Practitioners

4 M

0
1960 1985 2010

Time (Year)  
Devoting all attention to supervision or application both result in a much slower growth and saturation, 
with the only difference being in the fraction of the people who are experienced.  If experienced people 
spend all their time training new practitioners then a big fraction of practitioners are going to be 
experienced, but since experienced people do nothing but make more experienced people no useful 
work comes of it. 

If experienced people spend all their time training novices, there is a profound effect on the growth of 
the field.  People who express interest can quickly become proficient and start using the technology.  
While this is an interesting result, it also suggests a deficiency in the model.  If experienced people are 
only doing training, then all the work being done is being done by New Practitioners who are 
not likely to perform as well as experienced practitioners. 

Quality of Work (sdgrow3.mdl) 

The willingness of people to adopt a new technology depends on a number of things including the 
difficulty of learning the technology, the expected benefits and the compatibility of the technology 
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with existing technologies.  While it is important to have lots of people espousing the value of a 
technology, unless the technology displays significant and valuable results, it will never take off.   

We will use quality of work as a measure of the success of the technology, and differentiate 
between new and experienced practitioners in determining the quality of work being done.  Quality 
here represents the fraction of projects that are successfully implemented.  Projects that lead to bad 
decisions, are started but abandoned, never get implemented or otherwise get off track are not 
successes.  We will let the quality of work being done influence adoption fraction. 

We add new variables to get average quality and its effect on adoption: 

<effect quality on adoption lookup>

<application fraction>

effect quality on adoption

norm adoption fraction

average quality

experienced quality

new quality

<Experienced Practitioners>

<New Practitioners>

adoption fraction

 
Now we add the equations: 

adoption fraction = norm adoption fraction *
effect quality on adoption

Units: Dmnl

average quality =XIDZ( New Practitioners * new quality +
Experienced Practitioners * application fraction *
experienced quality, New Practitioners +
Experienced Practitioners * application fraction,
experienced quality)

Units: Dmnl

The XIDZ function prevents a numerical error (overflow) by setting the average quality to 
experienced quality in the special case when the application fraction is 0. 

Graph Lookup - effect quality on adoption lookup  

2

0
0 1

 
effect quality on adoption lookup((0,0),(0.8,1))
effect quality on adoption = effect quality on adoption lookup(

average quality)
Units: Dmnl

experienced quality = 0.8
Units: Dmnl

new quality = 0.4
Units: Dmnl

norm adoption fraction = 0.005
Units: Dmnl

When we simulate this model under the three extremes we get: 
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Graph for practitioners
2 M

0
1960 1985 2010

Time (Year)

practitioners - AllTrain Person
practitioners - AllSup Person
practitioners - AllApp Person

 
Having all practitioners spend all their time on applications (everyone learns by doing)  is now the best 
growth strategy, but all of the growth rates are slow relative to those of the last model.  The reason is 
simple; when only new practitioners are doing applications the quality is low and new interest is 
lowered.  To maximize growth in this model it is necessary to get a balance between applications and 
teaching.   

If we set both supervision fraction and training fraction to 0.1 we get better results: 

AllTrain
AllSup
AllApp
Balance
practitioners

10 M

0
Experienced Practitioners

10 M

0
New Practitioners

2 M

0
1960 1985 2010

Time (Year)  
The point here is that as we add additional structure to the model to enhance its realism, the simple-
minded strategy of training people like mad falls apart.   

Software Tools 

The model we have developed does provide a framework for thinking about the role of new software 
tools.  Software provides two things — ease of use and depth of understanding.  The first of these 
decreases the training time required to become proficient.  The second increases quality for both new 
and experienced modelers.   

Keeping the 10% of experienced modelers time for both training and supervision try cutting self
training time and min training time in half as an experiment (call this run Quick).  Then 
as an alternative experiment change new quality to 0.6 (call this run Quality). 
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Graph for practitioners

10 M

0
1960 1985 2010

Time (Year)

practitioners - Balance Person
practitioners - Quick Person
practitioners - Quality Person

 
Both ease of use and quality can have a significant impact on the speed of diffusion.  Vensim was 
designed to provide both ease of use and higher quality results and we hope it will speed the growth of 
System Dynamics. 

Conclusions 

We have started from a number of written hypotheses and developed a model that has helped us to 
explore some of these hypotheses in a unified framework.  This technique has a major advantage of 
focusing attention on policy issues from the start and also forces a continuity between the model and 
the way different people think about the problem.  This is very helpful.  One of the biggest problems in 
implementing model results is explaining the results in terms that the people implementing them can 
relate to.  By continually relating a model to hypotheses, this issue is addressed from the beginning and 
can be less daunting in the end. 

At this point a warning is in order.  We have built a simple conceptual model to help us think about 
different issues around growth in the field of System Dynamics.  While the model we developed has 
provided insights and allowed us to explore some of the hypotheses put forward, it is not possible to 
draw conclusions from it.   

When you get an insight from a simple model you need to stop and look around and ask yourself "is 
this what is happening."  In some cases the answer is yes, and the model has given you a new basis for 
understanding reality and acting on that understanding.  In this case the answer is maybe.  We have 
seen some plausible dynamics, but done little to establish confidence that the model represents what is 
really happening.  Unless we go further and make use of data and Reality Checks, we could end up 
with a model that seems plausible, but is just plain wrong. 
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5 Capacity and Market Growth 

In Chapter 4 we described how, through simply changing variable names, the diffusion model we were 
working with could be used to describe the introduction of a new product.  In this chapter we want to 
take that idea, and add production dynamics to relate the market to the firm.  This will allow us to 
investigate the use of different strategies to respond to market demand.  We will extend this model 
further to deal with more than one competitor in Chapter 6. 

Sales and Replacements (prod1.mdl) 

In order to make use of our diffusion model from Chapter 4, we need to refine it to deal with the reality 
of purchasing a new product.  First, in that model, sales represents the number of people who are 
sold on the product.  In order to stay in business, however, we need to distinguish between the people 
who have adopted the product and the number of products actually being bought.  Though the two 
concepts are similar, it is useful to separate them and provide a dimensionally consistent view of the 
process. 

Distinguishing people from products allows us to represent several other important characteristics of 
the real system, like order backlogs and replacement purchases. Once someone decides to purchase 
something it cannot always be immediately obtained.  Delivery delays are common when new markets 
are booming.  Since people who are waiting do not have the product, they are unlikely to be strong 
advocates. Finally, and fundamental to survival, people who have purchased a product use it and 
replace it when it wears out or becomes obsolete.  This process allows industries to prosper for 
extended periods of time, and should not be overlooked. 

To address these issues we will set up two parallel stock and flow structures— one for customers and 
one for products.  When a potential customer orders a product for the first time this it called a New
Order.  The order goes into New Backlog, and is filled over normal delivery delay to 
become a Product In Use.  While the customer is waiting for shipment of the product, they are in 
the Waiting Customers pool.  It is only after a new shipment occurs that customers become 
an active advocate of the product. 

We will run the model for 5 years with TIME STEP at .0625. 

Potential
Customers

Customers

committals

non customer
contacts

contact rate
customer prevalence

Product In
Use

customer with non
customer contacts

sales
fraction initial customers

product per customer

normal
delivery delay

Waiting
Customers

<normal
delivery delay>

completions

<Potential Customers>
<Waiting Customers>

total market

average life
product

total shipments total backlog

New Backlog
Replacement

Backlog

<New Backlog>

<total backlog>

new shipments

replacement shipments

replacement
ordersnew orders

total orders  



 47

Though we have added quite a bit of structure to this model, it still has the same dynamic character as 
the diffusion model.  The central feedback loops driving growth and saturation (more customers, more 
contacts, more sales eventually making everyone a customer) are unchanged.  There is a potential 
buffer (Waiting Customers) of people who are not active (neither advocates nor new purchasers) 
dampening the growth effects.  In this first round this will not have a significant impact since we will 
keep delivery delay short,  but when we introduce production it becomes quite important. 

The equations for the model are: 

average life product = 2
Units: Year

committals = customer with non customer contacts * sales fraction
Units: Person/Year

completions = new shipments/product per customer
Units: Person/Year

contact rate = 500
Units: 1/Year

The contact rate has been increased relative to the original diffusion model in Chapter 4  because 
it is much easier to show someone a product and say it is wonderful than it is to explain a complex 
methodology like System Dynamics. 

customer prevalence = Customers/total market
Units: Dmnl

customer with non customer contacts = non customer contacts *
customer prevalence

Units: Person/Year

Customers = INTEG(
completions,

initial customers)
Units: Person

initial customers = 100000
Units: Person

We start with a significant number of customers.  If we were starting with a small number of customers 
it would be necessary to add in advertising or some other activity to get the diffusion process going in 
a reasonably short period of time (this is a good experiment to try on your own). 

New Backlog = INTEG(
new orders - new shipments,

new orders * normal delivery delay)
Units: Gadget

new orders = committals * product per customer
Units: Gadget/Year

new shipments = total shipments * New Backlog/total backlog
Units: Gadget/Year

new orders and replacement orders are both competing for the same supply of production 
(limited by available capacity).  This formulation says that those products are rationed proportional to 
the amount previously demanded.  This is a simple, and commonly useful way to represent the 
distribution of a scarce resource.  The formulation new shipments = New Backlog/normal
delivery delay would give the same results.  This formulation was chosen because it will make 
adding a production sector simpler. 

non customer contacts = Potential Customers * contact rate
Units: Person/Year
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normal delivery delay = 0.125
Units: Year

Potential Customers = INTEG(
- committals,

1e+007)
Units: Person

Product In Use = INTEG(
new shipments + replacement shipments - replacement orders,

Customers * product per customer)
Units: Gadget

product per customer = 1
Units: Gadget/Person

Replacement Backlog = INTEG(
replacement orders - replacement shipments,

replacement orders * normal delivery delay)
Units: Gadget

replacement orders = Product In Use/average life product
Units: Gadget/Year

replacement shipments = total shipments * Replacement Backlog /
total backlog

Units: Gadget/Year

sales fraction = 0.005
Units: Dmnl

total backlog = New Backlog + Replacement Backlog
Units: Gadget

total market = ACTIVE INITIAL(
Potential Customers + Waiting Customers + Customers, Potential
Customers)

Units: Person

The ACTIVE INITIAL function is required here to break a simultaneous initial condition loop 
involving Waiting Customers.  What this function does is use the first expression during 
simulation, but the second expression during initialization to set the values for the different levels in 
the model.  Since both Waiting Customers and Customers are small at the beginning of the 
simulation this is a reasonable approximation that breaks the initial value interdependencies. 

total shipments = total backlog/normal delivery delay
Units: Gadget/Year

This model was crafted somewhat carefully so that, when we add in the production structure, total
shipments will be the only equation that requires modification.  Though such complete separation 
of structure is desirable for pedagogical purposes, it is not a goal that should be emphasized.  Feedback 
is pervasive, and excessive isolation of different sectors can lead to unrealistic models. 

Waiting Customers = INTEG(
committals - completions,

New Backlog/product per customer)

Waiting Customers is initialized to be in balance with the parallel flow of orders and shipments. 

When you simulate this model you may, depending on your options settings, receive a series of 
warnings: 
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These warnings relate to the use of the ACTIVE INITIAL.  The value of total market used to 
initialize the Levels in the model was 1E7.  Once all the Levels were initialized, total market was 
computed with the active portion of ACTIVE INITIAL to have a value of 1.013E7.  Additional 
variables also went through these two computations even though the ACTIVE INITIAL function was 
not explicitly used for them.  The different values are reported.  All are small changes and no real 
cause for concern. 

This basic model generates the same behavior as the diffusion model discussed in the previous chapter.  
Because of the addition of replacement orders, however, total orders has a new profile. 

Graph for total orders
8 M

0
0 2.5   5

Time (Year)

total orders - Prod1 Gadget/Year
 

Here orders grow rapidly, but instead of falling back to 0, they go to a sustained value of just under 5 
million Gadget/Year.  This is the replacement demand of all the customers using the product.  Because 
of the way the model is formulated, total products in use does not reach the value of 5 million that 
would occur if everyone had the product.  This is because once a decision is made to replace a product, 
it takes time to get the replacement, so some portion of the population is always waiting to receive the 
product. 

Production (prod2.mdl) 

In order to model the production side we need to determine capacity (how much can be produced) and 
track the fulfillment of orders with shipments.  The determination of capacity is formulated as a goal 
adjustment based on a target production.  This is very similar to the formulation for hiring used in the 
Workforce-Inventory model. In this model, however, capacity is thought of as including both capital 
and labor (a composite ability to produce), so the time constant for adjusting capacity is longer, 
reflecting the long lead times in acquiring facilities and capital equipment. 

The tracking of orders is done through a backlog (orders placed but not yet fulfilled).  A backlog is, in 
many respects, the opposite of an inventory; in this respect the production side does resemble the 
Workforce-Inventory model.  The other difference in this model is that the stream of orders is averaged 
when calculating target capacity and backlog.  In the Workforce-Inventory model we formulated target 
production directly on the basis of sales.  While this was the simplest formulation possible, it is not 
realistic.  People do not, based on a good day or a good month, immediately reformulate all plans for 
the future.  Short term variation in the order stream is smoothed out and therefore has very little impact 
on future plans. 

We create a new view and add in the production sector: 
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Average
Orders

investment reductions

capacity life

potential production
desired production

desired backlog

desired capacity

backlog correction

Backlog
target delivery

delay production

time to adjust
capacity

time to correct
backlog

time to average
orders

capacity adjustment

replacement investment

reference orders delivery delay

orders received

 
The production sector of this model has been formulated as a standalone view, completely 
disconnected from the first view.  The reason this was done was so that we can test the behavior of this 
portion of the model in isolation.  We will then link up the two parts of the model to see how they 
operate together.  This is a useful method for keeping things under control.  In general, the boundaries 
between subsystems of a model will not be quite as clean as they are in this example, but it is always 
possible to replace model variables with test inputs to see how fragments of structure behave in 
isolation. 

The equations for this sector, and these are a complete model unto themselves, are: 

Average Orders = INTEG(
(orders received - Average Orders)/time to average orders,

orders received)
Units: Gadget/Year

The equation for Average Orders could have been written using a SMOOTH function.  The 
explicit integration is used because it emphasizes the nature of the smoothing process. 

Backlog = INTEG(
orders received - production,

desired backlog)
Units: Gadget

backlog correction = (Backlog - desired backlog)/
time to correct backlog

Units: Gadget/Year

Backlog is initialized at desired backlog in order to start this model in an equilibrium. 

Capacity = INTEG(
investment - reductions,

desired capacity)
Units: Gadget/Year

Capacity is initialized at desired capacity in order to start the model in equilibrium. 

capacity adjustment = (desired capacity - Capacity)/
time to adjust capacity

Units: Gadget/Year/Year

capacity life = 2
Units: Year

delivery delay = Backlog/production
Units: Year
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desired backlog = Average Orders * target delivery delay
Units: Gadget

desired capacity = desired production
Units: Gadget/Year

desired production = Average Orders + backlog correction
Units: Gadget/Year

investment = capacity adjustment + replacement investment
Units: Gadget/Year/Year

orders received = reference orders * (1 + STEP(1,2))
Units: Gadget/Year

The STEP function in orders received causes a doubling of orders at Time 1.  Again, a test input 
using a STEP function is useful because it generates behavior that is easily understood relative to the 
driving inputs. 

potential production = Capacity
Units: Gadget/Year

production = MIN(desired production,potential production)
Units: Gadget/Year

reductions = Capacity/capacity life
Units: Gadget/(Year*Year)

reference orders = 2e+006
Units: Gadget/Year

replacement investment = reductions
Units: Gadget/Year/Year

target delivery delay = 0.125
Units: Year

The target delivery delay is set to the same value as normal delivery delay was set 
in the consumption model.  Although it is not necessary, two parallel concepts should generally be 
close, if not the same in value. 

time to average orders = 0.25
Units: Year

time to adjust capacity = 1
Units: Year

time to correct backlog = 0.5
Units: Year

When we simulate this model the behavior is similar to that of the Workforce-Inventory model in 
Chapter 1. Following the step increase in orders, the order backlog grows for a year. 
Production gradually increases until it exceeds orders, and the backlog begins to fall. 
Capacity overshoots, and by year 4 there is excess capacity as the desired production rate falls. 
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Orders, Production Capacity and Backlog
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As an experiment you might want to set target delivery delay to 1 year and see what 
happens.  This is an unrealistically high value for most products, but does result in interesting 
dynamics. 

Combining Sectors (prod3.mdl) 

What we now want to do is to connect these two models.  We will do this one step at a time.  First we 
will use the orders generated by the growth in customers to drive orders.  Then we will use the 
production to drive total shipments. 

We first delete reference orders.  Next, we add total orders and its causes (new
orders and replacement orders) from View 1 using the Model Variable tool.  Switching to 
View 1, we cut total orders from the view (highlight with Pointer and Edit>Cut, or Ctrl-X).  
Back to View 2, we connect total orders to orders received and change the equation for 
orders received to: 

orders received = total orders

Now simulate the model.  Instead of using a test input for orders (reference orders), we are now 
using the output from the first model as the input.  (If you are working with the models that come with 
Vensim please note that the model prod3.mdl will not generate the results that follow.  To get these 
results you need to set total shipments = backlog/normal delivery delay in prod3.mdl or work from 
prod2.mdl as described above.)  We get the results: 

Orders, Production Capacity and Backlog
20 M Gadget/Year

4 M Gadget

0 Gadget/Year
0 Gadget

0 1   2   3   4   5
Time (Year)

orders received - Prod3A Gadget/Year
production - Prod3A Gadget/Year
Capacity - Prod3A Gadget/Year
Backlog - Prod3A Gadget

 
Backlog grows for two and a half years then begins to fall off as new orders slow.  Production peaks in 
the third year (lagging a peak in orders in the second year) and there is excess capacity thereafter. 
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On the consumption side we still have the assumption that total shipments are equal to total
backlog divided by normal delivery delay.  This means that the diffusion process is 
unaffected by production capacity limitations. To finish coupling the two submodels, we change this 
to: 

total shipments = production

and modify the diagram appropriately.  When we simulate this new structure (be sure to use a new 
name for your run) we get different behavior: 

Orders, Production Capacity and Backlog
8 M Gadget/Year
4 M Gadget

0 Gadget/Year
0 Gadget

0 1   2   3   4   5
Time (Year)

orders received - Prod3 Gadget/Year
production - Prod3 Gadget/Year
Capacity - Prod3 Gadget/Year
Backlog - Prod3 Gadget

 
The peaks in production and orders occur much later and are less extreme.  The peak backlog is less 
than 3 million whereas it was almost 5 million in the previous run. This occurs because the diffusion 
process is now limited by the rate of capacity expansion. 

Comparing Runs 

At this point it is useful to explore the differences between the last two runs that were made. With the 
two runs loaded, select Customers into the Workbench and click on the Causes Strip graph:  

Prod3A
Prod3
Customers

20 M
10 M

0
completions

6 M
3 M

0
0 2.5 5

Time (Year)  

Now we double click on completions and again click on the Causes Strip graph.  A useful path to 
follow is:  Customers, completions, new shipments, new orders, committals, 
customer with non customer contacts. This gives you the final graph: 
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Customer prevalence stays much lower for much longer.  Because prevalence is low, there is much 
more limited contact, and therefore fewer people are hearing about and deciding to purchase the 
product.  

We want to focus in on the first year to understand what triggers the lower customer prevalence.  
Restrict the time axis to display behavior from about year 0 to year 1 (see Chapter 7 of the Tutorial if 
you don't know how to do this). 

Click on the Causes Strip graph again.  Output for the narrower time range is displayed:  

Prod3A
Prod3
customer with non customer contacts

400 M

0
customer prevalence

.08

0
non customer contacts

5 B

4.659 B
0 .5 1

Time (Year)  

With this narrower time range still selected, trace the causes of customer prevalence.  A useful 
path is customer prevalence, Customers, completions, new shipments, total
shipments.  When we get to the final Causes Strip graph we have: 
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This is the new connection that did not exist in the previous model — total shipments now depends on 
production, and production takes time to get up to speed due to the delays in perceiving the growth in 
orders and acquiring capacity. 

The decreased production means that fewer people have the product, and this in turn means that 
demand takes longer to build.  In a sense this is good, since it decreases the excess capacity overshoot 
as the market saturates.  From a competitive standpoint it is a problem, and this is explored in Chapter 
6.   

Experimentation 
There are a variety of experiments that can be performed with this model.  Try changing some of the 
parameters in the model and look at the resulting changes in behavior.  For example, you might 
decrease time to correct backlog, to look at the consequences of more aggressively 
managing your backlog.  Changing time to adjust capacity will allow you to look at the 
consequences of being able to get capacity more quickly or less quickly.  

A very interesting experiment is to change average product life   to a very large number.  
Consider a plot of production versus capacity for the base run: 

Production and Capacity
8 M

0

0 1   2   3   4   5
Time (Year)

production - Prod3 Gadget/Year
Capacity - Prod3 Gadget/Year

 
Now look at the same plot with a product that essentially never wears out: 
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Production and Capacity
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There is a much bigger excess capacity.  You will find that as you lengthen the life of the product, the 
amount of excess capacity increases.  Conversely if you shorten the life of the product you can get the 
model to a point where there is no excess capacity.  The difference between hamburgers and chain 
saws.  This is a very simple idea, but one that eludes many people trying to manage a product in an 
emerging market. 
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6 Competitive Dynamics† 

The models in this chapter use Subscripts and can only be developed in Vensim Professional and DSS. 

In Chapter 5 we introduced a small market growth model showing some advantages to responding less 
quickly to market demand, with a smoother, but more prolonged, transition to sustained replacement.  
This result quickly loses its meaning when the prospect of competition is introduced.  In this case, 
being slow to respond may mean losing the business to competitors. 

This chapter describes how to create equations that allow us to look at the consequences of having 
more than one producer in the market growth model.  To achieve this, we use the Subscript capabilities 
of Vensim Professional and DSS.  While this chapter may prove interesting reading for users of 
Vensim Standard, you will not be able to construct or simulate the model as described.  Constructing a 
two sector model (for production), if you wish to pursue it, can be done by replicating the production 
sector and linking the sectors to the customer view by adding in the appropriately modified 
coordinating equations (described in this chapter for the subscripted model). 

Adding Subscripts to the Model (prod4.mdl) 

You can either start with the model from Chapter 5 (prod3.mdl) and add subscripts as described here, 
or open the finished model prod4.mdl and skip to later in this section.  See Chapter 17 of the Vensim 
User's Guide  for instructions on the mechanics of adding subscripts to a model.  Only a brief outline of 
what to do is presented below. 

We start by adding a subscript range producer to the model.  Open the Subscript Control (using the 
rightmost Icon on the Toolbar) and click on the New  button.  You will be queried for a name.  Enter 
producer and click on OK.  The Equation Editor will open.  Type in US, THEM and click on OK.  

producer : US, THEM

The Equation Editor will close.  (You need to close the equation editor after creating the producer 
subscript range so that it can be reset to handle subscripts the next time it is open.  If, instead of closing 
it, you click on Choose or Next the subscript functionality will not be available.) 

Now go to the second View in the model and select everything except total orders, 
replacement orders and new orders.  You can do this by using Edit>All But Shadow 
followed by a Shift-Click on total orders. 

Now use the menu command Edit>Set Subscripts.  You should get a dialog box labeled Modify 
Subscripts for - 20 variables.  Select producer in the Subscript 1   dropdown and Click on OK.  
The producer Subscript is added to the equations for these 20 variables as well as those in which the 
variables are used.  Because of the way this model has been set up, this almost works.  There are only 
two problems.  One is production and the other is orders received. 

Because orders received is the output of the consumption sector, and because there are no 
Subscripts for the consumption sector, this variable cannot simply be Subscripted.  This equation for it 
needs to specify how the orders are divided between the two producers.  This simplest assumption is 
that both producers receive half of the orders:   

orders received[producer] = total orders/2

Note that the old equation for orders received would not cause any error messages to occur and 
it would pass units checking.  The only problem is that it allocates more sales than there are.  You do 
need to exercise care when adding subscript to a model so that you do not make such an error. 
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On the other side, total shipments used to be equal to production.  However, the equation 

total shipments = production[producer]

is not valid and Vensim will report an error.  Since more than one firm is now producing we need to 
make  

total shipments = SUM(production[producer!])

This equation indicates that total shipments is the sum of production for each producer.  
The exclamation mark ! is used to indicate which Subscript in the equation to sum over. 

Simulating this model gives results, on the production side, of: 

Order, Production, Capacity and Backlog
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0 Gadget/Year
0 Gadget
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Time (Year)

orders received[US] - Prod4 Gadget/Year
production[US] - Prod4 Gadget/Year
Capacity[US] - Prod4 Gadget/Year
Backlog[US] - Prod4 Gadget

 
This is the same as the results we previously saw, but on a different scale.  What happens, not 
surprisingly, is that we have two production sectors that are 50% reproductions of the old production 
sector. If the behavior of your two production sectors is not identical, you should review your model 
for errors. 

Now suppose that we let one of these production sectors (US) be more conservative in adjusting 
capacity.  To do this we set time to adjust capacity[US] to 2.  When we did this with only 
one production sector, we found a smoother transition with lower capacity overshoot.  Now we get the 
following results: 

Order, Production, Capacity and Backlog
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The market growth process is delayed, but there is almost no difference in the final capacity level 
reached.  You can look at the behavior of THEM using this same graph by clicking the Subscripts 
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control button, then clicking on the producer tab, then clicking on US to toggle it off, and finally 
THEM to toggle it on. Now when you activate the custom graph again and you will get: 

Order, Production, Capacity and Backlog
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orders received[THEM] - Prod4A Gadget/Year
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Capacity[THEM] - Prod4A Gadget/Year
Backlog[THEM] - Prod4A Gadget

 
In this case the timing is about the same as it was in the first run, but there is less excess capacity in the 
end.  This is an interesting example of how a policy effect in an aggregate model can be split among 
different sectors.  This result should not be given to much emphasis, however, because there is 
something apparently wrong with the behavior of this model. 

Demand and Delivery Delay (prod5.mdl) 

The above results show two producers, one with a huge backlog and one with a small backlog, both 
receiving the same number of orders.  To plot the two delivery delays click on the producer tab in the 
Subscript Control and highlight both US and THEM (or click the All button).  Now select delivery
delay into the Workbench, and click on the Graph tool . 

Graph for delivery delay

1

0
0 2.5   5

Time (Year)

delivery delay[US] - Prod4A Year
delivery delay[THEM] - Prod4A Year

 

Here we have two widely divergent values for delivery delay, yet people continue to place the 
same number of orders with both producers.  What we need is a connection from product availability 
to shipments by the producer to the amount ordered from each producer. 

Assuming that the producers are not working together, the only mechanism for shifting demand must 
come from consumer behavior.  Of the producer's activity, the only one directly observable by the 
customer is delivery delay.   We can change the model so that customers' new purchases are 
allocated more favorably to the supplier with the shortest lead time. 

In order to do this we need to partially introduce Subscripting into the demand side of the model.  We 
have already created two parallel flows of people and products in this part of the model, and the 
Subscripting will be applied only to the order and shipment portion of this sector. 
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Note that initial causes have been hidden to make this diagram more readable.  The new structure, 
shown in the lower left hand corner, determines the relative attractiveness of the two 
companies from delivery delay. On the basis of attractiveness, a fraction of total orders, given 
by the committal producer fraction, is allocated to each producer.  The remaining structure 
is unchanged, except that Subscripts have been added to a number of the equations.  The affected 
equations in the consumption sector are: 

average delivery delay = SUM(delivery delay[producer!] *
production[producer!]) / SUM(production[producer!])

Units: Year

Average delivery delay is computed as the average over the different producers weighted by 
production.   

committal producer fraction[producer] =
relative attractiveness[producer]/

SUM(relative attractiveness[producer!])
Units: Dmnl

completions = SUM(new shipments[producer!])/product per customer
Units: Person/Year

New Backlog[producer] = INTEG(
new orders[producer] - new shipments[producer],

new orders[producer] * norm delivery delay)
Units: Gadget

new orders[producer] = committals * product per customer *
committal producer fraction[producer]

Units: Gadget/Year

new shipments[producer] = total shipments[producer] *
New Backlog[producer]/total backlog[producer]

Units: Gadget/Year

The computation of shipments for both new and replacement product is parallel to the original 
formulation, but specific to a producer.  Once a customer is in with a producer, the customer sticks 
with that producer. 

Product In Use[producer] = INTEG(
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new shipments[producer] + replacement shipments[producer] -
replacement orders[producer],

Customers * committal producer fraction[producer] *
product per customer)

Units: Gadget

Graph Lookup - rel attractiveness lookup 
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rel attractiveness lookup ((0,5),(1,1),(2,0.5),(5,0) )
Units: Dmnl

relative attractiveness[producer] = ACTIVE INITIAL(
rel attractiveness lookup(delivery delay[producer]/

average delivery delay),1)
Units: Dmnl

The function ACTIVE INITIAL is used here to prevent a simultaneous initialization problem.  The 
initialization of the production sector requires that orders be known.  But without the above ACTIVE   
INITIAL function the computation of orders requires that Backlog be initialized.  In order to break 
an initial value simultaneous equation it is usually most useful to set some variable to its neutral value.  
In this case the natural variable to set is relative attractiveness (since it has a neutral value 
of 1). 

Replacement Backlog[producer] = INTEG(
replacement orders[producer] - replacement shipments[producer],

replacement orders[producer] * norm delivery delay)
Units: Gadget

replacement orders[producer] = Product In Use[producer]/
average life product

Units: Gadget/Year

replacement shipments[producer] = total shipments[producer] *
Replacement Backlog[producer]/total backlog[producer]

Units: Gadget/Year

total backlog[producer] = New Backlog[producer] + Replacement
Backlog[producer]

Units: Gadget

total orders[producer] = new orders[producer] + replacement
orders[producer]

Units: Gadget/Year

total shipments[producer] = production[producer]
Units: Gadget/Year

Waiting Customers = INTEG(
committals - completions,

SUM(New Backlog[producer!])/product per customer)

These modified equations include both equations to which Subscripts have been added to all variables, 
and equations containing some Subscripted variables.  There are a number of SUM functions used to 
go from looking at one production sector to all production sectors. 

In the production sector we need to redo the equation for orders received as  
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orders received[producer] = total orders[producer]

All of the logic for allocating demand is now done in the consumption sector.  One important note is 
that no equation depends on the number of production sectors.  This model can be modified to include 
additional production sectors by simply changing the equation for producer subscript range 
definition. 

When this model is simulated using the base parameters the behavior is precisely the same as the 
previous model, since the relative attractiveness of each firm is identical.  Changing time to
adjust capacity[US] to 2, however, produces  dramatically different results. 

Orders, Production, Capacity and Backlog
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Orders, Production, Capacity and Backlog
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Here the simulation was run for 10 years to show the long term results.  Slowing down the adjustment 
of capacity does very little to smooth out the adjustment process.   Instead, demand shifts to the other 
supplier, who ends up with nearly twice the final market.  In this case if we look at delivery
delay and committal producer fraction for the two suppliers we see: 
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Delivery Delay and Fraction of New Sales
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There is a persistent difference in delivery delay, and it is interesting how long we lose market 
share.  Even as our delivery delay falls, so does theirs.  Furthermore, because they are growing more 
quickly than us, average delivery delay falls very quickly as well.   

Conclusion 

We have taken a model showing the interactions between the demand for a product and the ability to 
produce that product and extended it to deal with more than one producer.  In addition to providing 
good technical background on the use of Subscripts, the model has provided some useful insights into 
the nature of new product markets.  Policies that, in a monopoly situation, smooth out the transition 
can, in the face of a competitive supplier, simply benefit the competitor.  It is true, in general, that as 
more detail is put in about the parties involved in a process it is possible to identify some as benefiting 
more strongly than others as new policies are implemented. 
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7 Financial Modeling and Risk 

In developing models for business, it is often helpful to be able to report standard financial measures.  
This can help managers understand the business implications of different policies, and also tie the 
modeling effort to something that is more familiar and better understood.  In this chapter we will 
develop a relatively simple financial model for analyzing a single investment, and then link this model 
to the one developed in Chapter 5. 

Undertaking a new investment is an activity that entails risk.  So far, the models we have constructed 
have not explicitly incorporated any risk assessment but rather focuses on the nature of the internally 
generated dynamics.  In many cases, however, understanding the ranges of behavior that can be 
generated by a model can be very helpful.  In this chapter we will use the multivariate sensitivity 
analysis tools available in Vensim to assess financial risk. 

Accounting and Causality 

Stock and flow representations and standard accounting practice have some fundamental consistencies.  
Every transaction is a flow, and all flows change stocks.  The focus in accounting is on tracking each 
and every transaction that occurs.  We might represent a simple company's accounting system as: 

receiptssales wages

Salary
ExpensesCash In BankAccounts

Receivable
Income
Sources

 
Note that there are no arrows indicating causality coming into any of the rates.  The purpose of 
accounting systems is not to model behavior, but to manage transactions.  The causes for those 
transactions are outside the realm of the accounting system.  Also note the lack of clouds or sources 
and sinks in the above representation.  A basic tenet of double entry bookkeeping is that every Debit 
has an associated Credit and all transactions are required to be balanced.  Income Sources and 
Sales Expenses provide a history of what has happened but they are not part of the company.   

A more functional model of our simple company might take the form: 

wagesreceipts

payout time

sales

receipt time

sales calls

Cash In Bank
Accounts
Receivable

 
There are several things to notice in the diagram above:  Clouds have replaced the end levels; policies 
(albeit incomplete) have been put in place to determine the rates; and new kinds of variables have been 
added.  The policies in place reflect those of the company (payout time) , those of its customers 
(receipt time) and those of the sales people in response to receiving good income ( though the 
sales calls   notion is a little more questionable than the other two).   
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Levels of Detail 
Adding details to accounting systems is generally easy; all that is required is the creation of additional 
categories. By contrast, adding details to a dynamic model requires more than just another stock or two 
and the corresponding rates of flow.  For every flow in a simulation model it is necessary to formulate 
a policy that determines that flow. Adding one stock and flow may create many new feedback loops.   
Therefore, in developing dynamic financial models we do not want to delve into the detail required for 
a fully functional accounting system.  The choice of how much detail to include must depend on model 
purpose. 

An important factor in determining the level of detail to include is the dynamic implications of 
introducing a finer structure.  For example, suppose that when you sell a product you charge both for it 
and shipping.  If you are setting up an accounting system you will want to set up two different accounts 
for these two revenue sources.  For doing financial modeling, however, making the distinction would 
not be worthwhile.  Every time a product is sold it is shipped, every time money is received for a 
product that has been sold the shipping charges are also received.  Unless there are dramatic changes in 
the shipping mix, shipping charges can netted out or lumped into product sales without changing 
dynamics. 

An Investment Evaluation Model 

We are considering investment in a production facility for Thneeds, a made-to-order product.  
(Thneeds are an imaginary product from the Dr. Suess children’s story The Lorax.)  You know the 
nominal capacity of the facility, its expected cost, how long it will take to build, the price of Thneeds, 
variable production costs and the interest rate that will be charged by the bank.  The question you need 
to address is whether or not the investment is a good idea. 

At this point you will probably recognize that this is a very different problem than the ones we have 
been looking at.  We are not trying to come up with a hypothesis about where behavior comes from but 
simply trying to track the consequences of some relatively simple assumptions.  Building the financial 
portions of models often has this straightforward, almost mechanical, flavor.  Constructing a model to 
answer this question does not present any large conceptual impediments.  As a bonus, once the 
financial formulations are constructed we will see how easily they can be integrated into other models. 

Sales and Receipts 
A very simple formulation for revenues and profits would be: 

profit = revenue - cost
revenue = price * sales

While this formulation is perfectly sensible in looking at the big picture, it is not always appropriate for 
addressing issues in financial performance.  This is especially if we are interested in seeing the 
differences between income and cash flow since this formulation implicitly assumes that the two are 
the same. 

In order to look more carefully at the determinants of cash flow it is necessary to give somewhat more 
attention to the process of making sales and collecting money.  Just the stocks and flows might look 
something like: 

Awaiting
Billing

Accounts
Receivable

billings cash receiptsproduction value  

Here production value is used to set up a billing process that must first generate a bill and later 
receive payment on that bill.  The policy formulations for billing and cash receipts are 
simple. Each is paid out over a period of time proportional to Awaiting Billing and 
Accounts Receivable.  
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Awaiting
Billing

Accounts
Receivable

billing processing time

price production

average payable delay

billings cash receiptsproduction value

 

The equation billings is just: 

billings = Awaiting Billing/billing processing time

and there is a similar equation for cash receipts.   

Equilibrium Initializations 
One of the important formulation techniques that will be used in this model is the initialization of the 
levels to an equilibrium or steady state value.  In equilibrium, the total inflows and outflows of each 
stock must be equal. To understand how this is accomplished consider what would happen in a 
structure such as that used above if price and production were both constant over a long period 
of time.  As long as the product of production value  is bigger than billings, Awaiting
Billing will rise (or fall if smaller).  But as Awaiting Billing rises, so will billings.  Over 
time billings will rise until it is equal to production value and then Awaiting Billing 
will stop changing.  With constant inputs, the above structure yields constant output for both 
billings and, by the same argument, cash receipts.   

To work this backward we require that the outflow (billing) and the inflow (production
value) to Awaiting Billing be equal: 

billings = production value

substituting this into the equation for billing  gives: 

Awaiting Billing/billing processing time = production value

or 

Awaiting Billing = production value * billing processing time

We can use this expression to initialize Awaiting Billing.  Using the same logic we can 
initialize  

Accounts Receivable = billings * average payable delay

When Vensim tries to compute an initial value for Accounts Receivable it will need to compute 
billings, and therefore Awaiting Billing and therefore production value and 
therefore price and production.  Vensim automatically takes care of this computational sequence 
problem and will inform you if it discovers any anomalies. 

With the above formulation accounts receivable only decreases when money is received.  It is, 
unfortunately, also true that some people do not pay their bills and these need to be written off.  We 
can add an outflow of losses to handle this problem: 

Awaiting
Billing

Accounts
Receivable

billing processing time

price production

average payable delay

billings cash receipts

lossesfractional loss rate

production value
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where  

losses = Accounts Receivable * fractional loss rate

The addition of losses complicates the selection of an initial value for Accounts
Receivable somewhat.  Now we need billings to be equal to cash receipts + losses.  
Substituting the different formulae we have: 

Accounts Receivable = billings /
(1/average payable delay + fractional loss rate)

Here fractional loss rate is equivalent to the reciprocal of a time constant. 

It is not necessary to initialize structure in equilibrium, but it can be very helpful.  It is very common 
for the early part of a simulation run to be dominated by adjustments from imbalances in Levels and 
Rates.  The dynamics generated by this imbalance do not tend to have intrinsic importance and can 
severely hamper the understanding of model dynamics.  For this particular model, we will actually be 
starting with production at 0, so we could have simply set the two levels to 0 as well.  However, the 
structure we are developing is designed to be easily used in other models and has been made more 
general with this in mind. 

The Complete Model (financ01.mdl) 
The remainder of the model is quite straightforward to construct.  Usually, the most difficult issues 
involve representation of the tax system faced by the corporation.  We have opted for a simple 
proportional tax that would be appropriate in many situations.  We have also used proportional 
depreciation of book value for tax purposes and proportional debt retirement.  These formulations were 
chosen because of their simplicity. 

building time
required investment<Time>

available capacity

production capacity

<Time>

net cash flow

Accounts
Receivable

Awaiting
Billing

taxable income

Debt

price

billing processing time

fractional
loss rate

cash receipts

average payable delay

billings

losses

gross income

taxes

net incomeinterest rate

debt retirement time

tax rate

debt financing fraction
new investment

principal repayment

interest payments

direct costs

variable
production cost

borrowing

npv cash flownpv income

<borrowing>

discount rate

<new investment>
<principal repayment>

Book Value

<interest payments>
<direct costs>

tax depreciation

tax depreciation time

production

production value

 

We have added in two additional Levels — Debt and Book Value.   If you look for feedback in this 
model you will find only the short draining loops around each Level.  This is a dynamically simple 
model with a reasonably high amount of detail around the cash flow and taxable income.  
The way the model is set up required investment occurs over building time and then 
production comes on line at capacity.  The model, as constructed, is for a fixed up front investment 
followed by a realized cash flow from production. 

The model uses the NPV function to compute a net present value for both income and cash flow.  
The NPV function is a dynamic function that takes as arguments a stream of payments, a discount rate, 
an initial value and an adjustment factor.  We are using 0 as an initial value and 1 as the adjustment 
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factor.  With these argument the NPV will, at the end of the simulation, report the present value of the 
stream as of the beginning of the simulation. 

Model Equations 
Book Value = INTEG(

new investment - tax depreciation,
0)

Units: $

tax depreciation = Book Value / tax depreciation time
Units: $/Year

taxable income = gross income - direct costs - losses -
interest payments - tax depreciation

Units: $/Year

production = available capacity
Units: Widget/Year

available capacity = IF THEN ELSE ( Time >= building time,
production capacity, 0)

Units: Widget/Year

tax depreciation time = 10
Units: Year

tax rate = 0.4
Units: Dmnl

Accounts Receivable = INTEG(
billings - cash receipts - losses,

billings/(1/average payable delay + fractional loss rate))
Units: $

average payable delay = 0.09
Units: Year

Awaiting Billing = INTEG(
price * production - billings,

price * production * billing processing time)
Units: $

billing processing time = 0.04
Units: Year

billings = Awaiting Billing / billing processing time
Units: $/Year

borrowing = new investment * debt financing fraction
Units: $/Year

building time = 1
Units: Year

cash receipts = Accounts Receivable / average payable delay
Units: $/Year

Debt = INTEG(
borrowing - principal repayment,

0)
Units: $

debt financing fraction = 0.6
Units: Dmnl
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debt retirement time = 3
Units: Year

direct costs = production * variable production cost
Units: $/Year

discount rate = 0.12
Units: 1/Year

fractional loss rate = 0.06
Units: 1/Year

gross income = billings
Units: $/Year

interest payments = Debt * interest rate
Units: $/Year

interest rate = 0.12
Units: 1/Year

losses = Accounts Receivable * fractional loss rate
Units: $/Year

net cash flow = cash receipts + borrowing - new investment -
direct costs - interest payments - principal repayment - taxes

Units: $/Year

net income = taxable income - taxes
Units: $/Year

new investment = IF THEN ELSE (Time >= building time, 0,
required investment / building time)

Units: $/Year

npv cash flow = NPV (net cash flow, discount rate, 0, 1)
Units: $

npv income = NPV (net income, discount rate, 0, 1)
Units: $

PRICE = 1
Units: $/Widget

principal repayment = Debt / debt retirement time
Units: $/Year

production capacity = 2400
Units: Widget/Year

required investment = 2000
Units: $

taxes = taxable income * tax rate
Units: $/Year

variable production cost = 0.6
Units: $/Widget

TIME STEP = 0.015625

Simulation Results 
We run the model for 5 years with TIME STEP =  0.015625. 
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Net Income and Cash Flow

2,000

-2,000

0 2.5   5
Time (Year)

net income - Financ01 $/Year
net cash flow - Financ01 $/Year

 

At the end of the simulation npv income is $1,073 while npv cash flow is -$54.70  (this is on a 
total investment of $2,000.  If we plot the present values over the course of the simulation we get: 

Net Present Value of Income and Cash Flow

2,000

-2,000

0 2.5   5
Time (Year)

npv income - Financ01 $
npv cash flow - Financ01 $

 
There is a significant difference between the income and cash flow profiles — and this is a result of the 
manner in which income is computed. 

Sensitivity Testing 

From the above simulations, you could conclude that on an income basis the investment looks 
attractive, while on a cash flow basis it does not.  We have, however, built a model that contains quite 
a few assumptions, and these assumptions are known to be uncertain.  We could go in and change the 
assumptions one at a time and simulate the model to understand the implications.  There is, however, 
an alternative to this, known as Monte-Carlo Simulation or Multivariate Sensitivity Simulation 
(MVSS).  To use this, we will set ranges on the uncertain assumptions, then Vensim will simulate the 
model multiple times randomly selecting values for the uncertain assumptions.   

Open the Simulation Control and create a sensitivity control file (e.g., financ01.vsc). Select the 
following parameters, distributions, and ranges (Chapter 11 of the Tutorial has details on setting up 
and running Sensitivity Simulations): 
average payable delay = RANDOM_UNIFORM(.07,.11)
billing processing time = RANDOM_UNIFORM(.03,.05)
building time = RANDOM_UNIFORM(.8,1.2)
fractional loss rate = RANDOM_UNIFORM(.05,.08)
interest rate = RANDOM_UNIFORM(.09,.15)
price = RANDOM_UNIFORM(.9,1.2)
production capacity = RANDOM_UNIFORM(2200,2600)
required investment = RANDOM_UNIFORM(1800,2200)
variable production cost = RANDOM_UNIFORM(.5,.7)

Be sure to choose the Multivariate option and set the number of simulations to 200. 
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In order to do a sensitivity analysis you will need to select a set of variables for which to view the 
results.  Though Vensim normally stores all the results, this is not practical in the case of sensitivity 
analysis, and so we need to specify a shorter list. Chapter 11 of the Tutorial has information on setting 
up save lists.  For this model it is useful to save (financ01.lst) : 

npv cash flow
npv income
net cash flow
net income

Now run the simulation. Vensim first does a normal simulation, and then the multiple sensitivity 
simulations.  On a 133 Megahertz Pentium based computer this model takes a few seconds to run 200 
simulations.  Depending which Vensim configuration you are using and what computer you have this 
process can take significantly longer.  Once the sensitivity simulations start you will see a window 
showing each simulation as it is finished.  If this is going very slowly, you can stop before Vensim 
completes all 200 simulations by clicking on the Cancel button.  The results, if you do stop early, are 
likely to be a little different from those reported here. 

Displaying Sensitivity Results 

There are three tools available for the display of sensitivity results: the Sensitivity Graph tool, the Bar 
Graph tool and, if you are working with Vensim Professional or DSS,  the Stats tool.  Chapter 11 of the 
Tutorial describes how to bring in a toolset with the Sensitivity tool available and Chapters 12 and 13 
of the Reference Manual describe setting up and configuring the Analysis tools. 

Select npv cash flow as the workbench variable and click on the Sensitivity Graph tool.  You 
should see something like this: 

FinSens1
50% 75% 95% 100%
npv cash flow

2,000

1,000

0

-1,000

-2,000
0 1.25 2.5 3.75 5

Time (Year)  
This graph shows the uncertainty in the net present value of cash flow as it changes over time.  At any 
time, half of the simulations have generated a value within the 50% region, three quarters within the 
75% region and so on.  Two things are worth noting about this graph.  First the uncertainty grows over 
time - a natural result of the cumulative nature of a present value calculation.  Secondly, the percentiles 
are not evenly spaced.  We can see this more clearly with the Bar Graph tool .  We need to check on 
the Histogram and Sensitivity checkboxes in the Bar Graph options.  Now click on the Bar Graph tool 
and you will get the output: 
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FinSens1
npv cash flow @ 5 - sensitivity
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Even though we have used a uniform (flat) distribution of uncertainty inputs, this graph indicates that 
the npv cash flow is distributed with something of a bell shaped curve.  This is because we are 
combining together in this model a number of different independent sources of error. A well known 
result from statistics is that doing this tends to lead to variables that are normally distributed. 

These results show how you can use sensitivity analysis to understand the implications of uncertainty 
in input on the likely results.  The results for the model here show that modest uncertainty of the 
assumptions results in modest uncertainty around the value of the investment.  An investment needs, of 
course, to be judged against alternative investments.  The histogram shown above gives substantially 
more information than an expected present value in making that judgment. 

Financial Modeling and Market Growth (financ02.mdl) 

The financial model we developed was designed to help evaluate a single investment.  The structure 
itself, however, is quite general.  We can easily make use of it with the market growth model 
developed in Chapter 4 (prod3.mdl).  That model already had the concepts of investment and 
production, and we will need to integrate these two into the financial model. 

In order to join the two models, begin with the financial model. Select the entire model structure and 
copy it. Now open the market model (prod3.mdl) Create a new view. In the blank screen, use Paste 
Structure to insert the financial structure into the market model.  Save your new model as financ02.mdl 
or another name you prefer.   Chapter 8 of the Vensim Tutorial has instructions for pasting structure 
from one model into another. 

Looking at the view in the new model you will see that the financial structure looks the same except 
that production has been renamed production 0.  This is because the variable production 
already existed in the market growth model.  The renaming prevents a conflict from arising when the 
new structure with a different definition for production is pasted in.  In this case, however, we 
want to use the old variable production.  

Use the Shadow Variable tool  to insert a copy of the market model variable production just below 
production 0. The variable production should appear in angle brackets <>. Now use the 
Variable Merge tool  and drag production on top of production 0.  You will be asked if you 
want to delete variable "production 0" and replace it with "production." 

Make sure that you dragged production onto production 0 and not the other way around.  
Answer No if you made a mistake.  Otherwise click on Yes and the variable production 0 will be 
replaced by <production>. 

Now use the Delete tool  and, in the lower right hand corner of the sketch, remove required
investment, building time, production capacity and available capacity
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from the model.  These variables will no longer be used.  Also remove the arrow from <Time> to 
new investment.  You can then either hide <Time> or cut it from the view. 

capacity cost
<investment>

net cash flow

Accounts
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Awaiting
Billing

taxable income
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price

billing processing time
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loss rate

cash receipts
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gross income

taxes

net incomeinterest rate

debt retirement time

tax rate

debt financing fraction

new investment

principal repayment

interest payments

direct costs

variable
production cost

borrowing

npv cash flownpv income

<borrowing>

discount rate

<new investment>
<principal repayment>

Book Value

<interest payments>
<direct costs>

tax depreciation

tax depreciation time

<production>

 

Click on the Model Shadow variable tool and  add investment to the sketch near new
investment and draw an arrow from investment to new investment.  You will also need 
the add a new variable capacity cost as a cause of new investment.  Your diagram 
should now look like the one above. 

Click on the Equation Edit subtool and you will see new investment and capacity cost 
highlighted.  The equations for these are:  

new investment = investment * capacity cost
Units: $/Year

capacity cost = 0.5
Units: $/(Gadget/Year)

Change the value for of tax depreciation time to 2 years to reflect the shorter lived capacity 
assumptions in the production model.  You will also need to change TIME   STEP in the model to  
0.015625 because of the short term dynamics around the billing process. 

Simulation Results 
Simulating this model gives the following: 

Net Income and Cash Flow
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There is a very important divergence between income and cash flow.  Cash flow is negative for several 
years during the start-up phase of the industry. Income is falling when cash flow reaches its best levels.  
There is also a divergence of the net present values: 

Net Present Value of Income and Cash Flow
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Sensitivity Tests 
It is also possible to run sensitivity tests on this model.  In this case we can consider uncertainties now 
only in the basic cost assumptions, but also in the basic market parameters.  Using the sensitivity 
control file (financ02.vsc): 
average payable delay = RANDOM_UNIFORM(.07,.11)
billing processing time = RANDOM_UNIFORM(.03,.05)
fractional loss rate = RANDOM_UNIFORM(.05,.08)
interest rate = RANDOM_UNIFORM(.09,.15)
price = RANDOM_UNIFORM(.9,1.2)
variable production cost = RANDOM_UNIFORM(.5,.7)
capacity cost = RANDOM_UNIFORM(.4,.6)
initial customers = RANDOM_UNIFORM(90000,110000)
sales fraction = RANDOM_UNIFORM(.004,.006)

We can simulate this and get the results on net income: 

FinSens02
50% 75% 95% 100%
net income
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Here the range of possible outcomes is enormous.  Similarly if we look at the net present value of 
income we get: 



 75

FinSens02
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npv income
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Conclusions 

We have developed in this chapter a model that helps evaluate the financial consequences of 
investment plans, and also allows us to investigate the uncertainty surrounding these results.  The 
model developed has not introduced any significant dynamics, but acted more as a measuring device.  
For a variety of business models including a financial sector is helpful as a means of conveying model 
results and understanding the implications of alternative policies. 

In many cases, the financial sector in a model will also be an important part of the overall model 
dynamics.  Feedback from cash flow and income changes peoples behavior.  In some cases it may be 
necessary to curtail new investment, or defer maintenance spending in response to low profits or 
deficient cash balances.  The model developed in this chapter provides some of the material to begin to 
incorporate these effects in your models. 
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8 Furnaces, Pendulums and Oscillation 

In Chapter 2 we went through a detailed development of the Workforce-Inventory oscillator.  Although 
useful in its own right, that model is most important for the insights it provides into the process of 
oscillation.  In this chapter we review two additional models for different problems that share the same 
basic structure as the Workforce-Inventory model.  Each produces oscillations, and each has a special 
characteristic that requires special attention. 

Thermostatic Control (thrmstat.mdl) 

A simple mechanical system that is often encountered is a thermostatic control attached to a furnace.  
This system is interesting because it is designed to oscillate.  The purpose of a thermostat is to keep a 
room in a comfortable temperature range, without constantly switching the furnace on and off.  To do 
this, the control must establish a buffer range.  When the temperatures goes below the bottom of the 
range the furnace comes on, when it goes above the top of the range the furnace turns off.  For all 
temperatures within the range the furnace stays on if is it on, and stays off if it is off. 

The reason that this is different from the other models we have considered so far is that it involves a 
discrete event - the furnace turning on or off.  To make matters worse, the way the problem has been 
described, the switching of the furnace is dependent on whether the furnace is already on.  This seems 
to be a paradox.  The solution to the paradox, in this case, has to do with the granularity of time.  The 
switching on and off of a furnace is not really a discrete event, it is just relative to the processes of 
heating and cooling that it seems instantaneous.  For modeling purposes, we resolve this paradox by 
tracking the last known state of the furnace: 

Temperature

outside temperaturecooling time

heating cooling

target temperature
thermostatic buffer

furnace capacity

furnace was on
furnace is on

 
The equations for the model are: 

Temperature = INTEG(heating-cooling,70)
Units: Degrees Fahrenheit

cooling = (Temperature - outside temperature)/cooling time
Units: Degrees Fahrenheit / Hour

cooling time = 8
Units: Hour

outside temperature = 35
Units: Degrees Fahrenheit

The formulation for cooling is the same as the stock adjustment formulation for net hire
rate used in the Workforce-Inventory model.  If heating is zero the cooling effect will take 
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Temperature from its current value toward outside temperature over cooling time.  
The interpretation of cooling time as the average time for an individual particle of the room to 
cool is not useful here since individuals are molecules and the concept of temperature requires 
averaging over molecules.  cooling time, instead, should be thought of as the time over which 
most (63%) of the gap between the current room temperature and the target or equilibrium temperature 
is closed.  For example, if the outside temperature was 0, and the inside temperature was 100, then 
after 8 hours (with the furnace off) the inside temperature would be 37.  The temperatures would never 
become exactly equal to 0, but after 24 hours it would be very close (5 degrees). 

heating = furnace is on * furnace capacity
Units: Degrees Fahrenheit /Hour

furnace capacity = 10
Units: Degrees Farenheit/Hour

heating represents the addition of energy to the house.  It is very much like turning on a faucet and 
letting water run into a sink.  The logic for turning the furnace on is what keeps the temperature within 
the target range. 

furnace is on = IF THEN ELSE(furnace was on :AND:
Temperature < target temperature + thermostatic buffer,1,
IF THEN ELSE(Temperature < target temperature -

thermostatic buffer,1,0))
Units: Dmnl

This formulation indicates that if the furnace is already on, and Temperature is below the target 
plus the buffer, the furnace should be left on.  Otherwise, the furnace is turned on only if 
Temperature is below the target minus the buffer. 

target temperature = 70
Units: Degrees Fahrenheit

thermostatic buffer = 2
Units: Degrees Fahrenheit

furnace was on = DELAY FIXED(furnace is on,0,0)
Units: Dmnl

furnace was on needs to have a memory so it must be a dynamic variable.  The DELAY FIXED
function  provides this memory.  The minimum delay for the DELAY FIXED function is TIME
STEP, and the delay time of 0 is used to emphasize that we are concentrating on the most recent state 
of the furnace.   It would be possible to formulate furnace was on  as 

furnace was on = INTEG((furnace is on - furnace was on) /
TIME STEP,0)

This would give the same results, but might have numerical problems leaving furnace was on 
with a non-zero value different from one.  This is especially likely to be a problem if an integration 
technique other than Euler integration is used. 

You will notice that the formulation of furnace was on always starts this variable at 0.  If you 
were to attempt to start this variable at the value of furnace is on,  as in: 

furnace was on = DELAY FIXED(furnace is on,0,furnace is on)

a simultaneous initial value condition would result.  You need to give furnace is on an initial 
numerical value to get simulation underway. 

The control constants have been set to run this model for 24 hours in intervals of 1/16 (.0625) of an 
hour. 
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Simulation 
When you simulate this model you get the following behavior: 

Temperature, Heating and Cooling
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Temperature - Thrmstat Degrees Farenheit

 
Temperature follows a sawtooth pattern over the course of the day.  The rate of cooling varies 
modestly around a value of 4 Degrees Farenheit/Hour.  The furnace switches from on for a little less 
than an hour and off for a somewhat longer period of time. 

If we do an experiment in which outside temperature is lowered to 10 degrees (from 35) we 
get the behavior: 

Temperature, Heating and Cooling
15 Degrees Farenheit/Hour
80 Degrees Farenheit

0 Degrees Farenheit/Hour
30 Degrees Farenheit

0  12  24
Time (Hour)

heating - Thrmst2 Degrees Farenheit/Hour
cooling - Thrmst2 Degrees Farenheit/Hour
Temperature - Thrmst2 Degrees Farenheit

 
Here the furnace is on much more, heating takes longer and cooling is more rapid. 

The Pendulum (pendulum.mdl) 

A pendulum consists of a weight attached to a string suspended from a hook or other solid attachment.  
It is a common and well understood device that has been in used in clocks for several centuries.  The 
reason that pendulums are valuable for time keeping is that they maintain a relatively constant period 
so long as their range of motion is small. 
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If we let Θ represent the deviation of the pendulum from straight up and down, then the force on the 
pendulum can be decomposed into a component parallel to the string (mg cos(Θ), where m is the 
pendulum mass and g is the acceleration of gravity) and a component perpendicular to the string (mg 
sin(Θ) ).  Since the weight can only move perpendicular to the string, the accelerating force is 
perpendicular to the string, so that the linear acceleration is just g sin(Θ).  We can convert this linear 
acceleration to a radial acceleration by dividing by the length of the string. 

We represent this physical problem with the diagram: 

Angular
Position

Angular
Velocity

angular acceleration

g

initial angular position

length

radian2degree  
Notice the cascaded levels.  The acceleration of an object changes its velocity, which in turn changes 
its position.  This means that there is a rate which is also a level.  Though this makes good sense for 
this example, such a situation is actually quite rare for nonphysical models.  In the Workforce-
Inventory example Inventory is analogous to Angular Position, and Workforce is 
analogous to Angular Acceleration.  In that case, however, Workforce does not directly 
cumulate into Inventory, but is instead responsible for a process (production) that cumulates 
into Inventory, all of which introduces more loops as discussed in Chapter 1.  This model has only 
a single feedback loop. 

For simplicity, this model uses angles computed in degrees.  radian2degree   is a constant 
(=360/2π) that converts between radians and degrees, and is used in the computation of sin(Θ).  To 
maintain dimensional consistency within the equations the unit of measure Radian is considered to be 
equivalent to dimensionless. 

The equations for this model are: 

Angular Position = INTEG(Angular Velocity,initial angular position)
Units: Degree

Angular Velocity = INTEG(angular acceleration,0)
Units: Degree/Second

angular acceleration = -radian2degree*
SIN(Angular Position/radian2degree) * g / length

Units: Degree/Second/Second
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In this equation you will notice that Angular Position is converted from degrees to radians by 
dividing by radian2degree.  The result (-sin(Θ) g/length) is then in radians and is converted back 
to degrees by multiplying by radian2degree. 

g = 9.2
Units: Meter/Second/Second

initial angular position = 20
Units: Degree

length = 0.5
Units: Meter

radian2degree=57.296
Units: Degree

Simulating the Pendulum 
If you have ever solved the equations of motion for a pendulum all of the above should seem very 
familiar with one exception.  Normally the simplifying assumption sin(Θ)=Θ is made.  Because we are 
simulating these equations, rather than solving them explicitly, the simplification is not necessary.  In 
fact, we can use this model to understand the implications of larger swings on the period of the 
pendulum, something that is not possible if the equations are simplified. 

Euler Integration 
We want to simulate this model for 10 seconds at intervals of 1/32nd of a second (.03125 seconds).  If 
you attempt this using Euler integration you will get the surprising result: 

Graph for Angular Position

600

-200
0   5  10

Time (Second)

Angular Position - Euler Degree
 

If you are puzzled, this graph says that if you raise the weight to 20 degrees and let go, the pendulum 
goes back and forth a few times, and then begins to spin around its axis.  While this may be consistent 
with a child's notion of how a swing ought to work, you would be hard pressed to design a pendulum 
to do this.  Something is wrong, and it has to do with integration. 

When you are using Euler integration and suspect that it is giving bad results, a good test is to cut the 
integration period in half, and see if the results change.  We can do this by making the simulation run 
Euler and changing TIME STEP to .015625.: 
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Graph for Angular Position
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0   5  10
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Angular Position - Euler Degree
Angular Position - Euler2 Degree

 
The results change a great deal, but still do not make sense.  The oscillations are still growing, and 
rotation would likely result in a few more seconds. 

In order to get good results from this model using Euler integration you need to make TIME STEP 
very small indeed (< .001).  If you do want to try this be sure to change SAVEPER to be a number 
(.0625 or .03125) or Vensim will try to store 10,000 values for each variable and, most likely, fail to do 
so.  There is, however, a better solution. 

The reason that Euler integration fails for this model is that this model represents an undamped 
oscillator on the edge between stability and instability.  Euler integration is a simple linear 
extrapolation method, and when you try to extrapolate for something on a curve, you always overshoot 
the turning point.  Normally a small overshoot is not much cause for concern, but in this case it 
provides a little bit extra displacement on each cycle, and that adds up to give complete divergence.   

Runge-Kutta Integration 
Vensim provides alternative integration techniques for dealing with models such as this.  These 
methods, referred to as Runge-Kutta Integration, provide higher order extrapolation, looking at both 
the trajectory and how the trajectory is changing to give a better solution.   

The different choices under Runge-Kutta are RK4 Auto, RK4 Fixed, RK2 Auto and RK2 fixed.  These 
use higher order approximation (2nd and 4th) to the underlying continuous system.  In general, RK4 
Auto is the most accurate technique to use.  It performs, automatically, the experiment of decreasing 
TIME STEP as done above to check accuracy.  If accuracy is below an acceptable tolerance, the 
integration interval is decreased further until the desired accuracy is obtained.  This is not always 
possible, and you will sometimes receive warning messages about being unable to achieve the desired 
accuracy.  RK4 Fixed is the same as RK4 Auto except that it does not do this accuracy checking.  RK4 
Fixed is faster, but you need to test, just as you do for Euler, to see if  accuracy is a problem. 

It is important to note that when you are using the Runge-Kutta integration techniques you will not see 
all intermediate computations.  TIME STEP, and therefore normally SAVEPER are not affected by the 
integration technique.  With any of the Runge-Kutta integration techniques there will always be 
computations made between TIME STEPS.  You can, consequently, see a level that does not seem to 
be the accumulation of its inflows and outflows.  For truly continuous systems this will not matter, but 
if there is any switching going on things can get very confusing. 

For small models it is best to use RK4 Auto.  The other integration techniques are intended to allow 
you to trade off accuracy and simulation time to fit your needs.  When you simulate this model using 
RK4 Auto you get the results: 
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Graph for Angular Position

20

-20
0   5  10

Time (Second)

Angular Position - RK4_Auto Degree
 

This is more like what you would expect - continued oscillation to plus and minus 20 degrees.  
Changing the initial position to 45 degrees (no longer a small deviation) gives: 

Graph for Angular Position

60

-60
0   5  10

Time (Second)

Angular Position - RK4_Auto Degree
Angular Position - Big Degree

 
You get the same qualitative behavior, but the period is longer.  This is different from what is typically 
learned in introductory physics, in which the period is constant due to the approximation of sin(Θ)=Θ.  
You might change the model so that:  

angular acceleration = -radian2degree *
(Angular Position/radian2degree) * g / length

and see what behavior results. 

More on Runge-Kutta Integration 

We have looked at two models in this chapter and one of them required the use of Runge-Kutta 
integration in order to get good results.  We did not use Runge-Kutta on the Thermostat model and 
there was a reason for that. 

Runge-Kutta Simulation for the Thermostat Model (thrmstt2.mdl) 
The results for the Thermostat model were obtained using Euler integration.  If you try to simulate this 
model using RK4 Auto you will get the messages: 

 
. . . . . . . . . . and the results: 
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Temperature, Heating and Cooling

15 Degrees Farenheit/Hour
80 Degrees Farenheit

0 Degrees Farenheit/Hour
30 Degrees Farenheit

0  12  24
Time (Hour)

heating - ThrmRK4 Degrees Farenheit/Hour
cooling - ThrmRK4 Degrees Farenheit/Hour
Temperature - ThrmRK4 Degrees Farenheit

 
This is different from our previous results, and clearly wrong.  Temperature is flat for long periods of 
time during which the furnace does not appear to be on.  As we have formulated this model it is 
inherently discontinuous, and Runge-Kutta integration is not going to help.  The flat spots in 
Temperature are the result of computations within TIME STEP.  What is happening is that during 
computation the trigger point to turn the furnace on is reached.  However, furnace was on 
remains at 0 during this time because it is a discrete delay and discrete delays change only at TIME
STEP.   

It is not possible to look inside of the integration technique, but we can reformulate the model slightly 
to get a picture of what is happening (thrmst2.vmf).  We introduce a new variable sampled
furnace is on that is the same as furnace is on at the old TIME STEP, but retains 
that value when TIME STEP is made smaller.  This is done with the equation: 

sampled furnace is on = SAMPLE IF TRUE(MODULO(Time,0.0625) = 0,
furnace is on,furnace is on)

This equation forces sampled furnace is on to hold its value until Time is a multiple of 
0.0625, then switch to the new value.  furnace was on is rewritten to depend on sampled
furnace is on 

furnace was on = DELAY FIXED(sampled furnace is on,0,0)

This model has exactly the same behavior as the first model when TIME STEP is .0625.  However, if 
we set TIME STEP to 1/1024 ( 0.0009765625) and reduce the length to 1 (we have also set 
OUTSIDE TEMPERATURE to 34) we get: 

Temperature, Heating and Cooling

20 Degrees Farenheit/Hour
80 Degrees Farenheit

0 Degrees Farenheit/Hour
40 Degrees Farenheit

0 0.5 1
Time (Hour)

heating - thrmst2 Degrees Farenheit/Hour
cooling - thrmst2 Degrees Farenheit/Hour
Temperature - thrmst2 Degrees Farenheit

 
There is a flat spot in temperature during which the furnace cycles from on to off at every time step 
(appearing as a dark rectangle).  If we zoom in on this time period (by holding down the shift key and 
dragging the mouse) we can look at the causes of furnace is on. 
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thrmst2
furnace is on

1

0
furnace was on

.2

0
Temperature

68.00

67.99
.4921 .5 .5078

Time (Hour)  
If you look at the time scale you will see that we are focused in on a very short period of time.  
Temperature is very nearly constant.  The furnace is switching on and off to hold it constant.  
Furnace was on remains 0.  The reason that furnace was on remains 0 as long as it does is 
because it is sampled only at multiples of .0625.  Since the furnace is flickering on and off, it can take 
a while to catch the instant in which the furnace is on and switch to searching for the shutoff condition. 

It is important to emphasize that what we are investigating here is the behavior of simulation 
techniques for this model, and not the behavior of the physical system.  Were we to attempt the 
construction of a thermostat without a buffer zone these issues would apply directly to the physical 
system. 

Conclusions on Integration Techniques 
The dramatic differences between the results of Euler and Runge-Kutta integration are rarely as clear 
as they are in this chapter.  For most models of social systems the different techniques do not lead to 
dramatically different results.  For physical systems, in which the interrelationships are exact and based 
on physical laws Runge-Kutta integration is almost always preferable.  The one exception to this rule 
is for models such as the Thermostat model in which we have explicitly introduced discrete time 
concepts.  If you use any discrete time concepts, especially any of the DELAY functions, you should 
probably stay with Euler integration. 
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9 Discrete Functions 

Most system dynamics models are made up entirely of continuously formulated stocks and flows.  For 
most problems that deal with aggregate structures this is perfectly appropriate.  Adding up a large 
number of discrete activities typically gives you something that is as easily approximated by a 
continuous formulation as it could be by a discrete formulation.  Still, there are situations where it is 
simply easier to make use of discrete formulation and Vensim has a number of functions that can help 
do this. 

This Chapter is really just a series of examples on how Vensim’s discrete functions can be used to 
represent different processes.  The purpose is basically to provide some useful how to material for 
creating your own models.  This is also the purpose of the Molecules, as discussed in Chapter 10. 

The only discrete function supported in Vensim PLE and PLE Plus is DELAY FIXED. 

Continuous Versus Discrete Delays 

Before we get started on the discrete examples it is useful to see the continuum that exists between 
discrete and continuous models.  This is most vividly displayed by looking at a model that has several 
types of delays mguide\9discret\discon.mdl.. 

pulse to 100 for 6
hours at time 10

Accumulation 1

Accumulation 3
Step 1

Accumulation 3
Step 2

Accumulation 3
Step 3

Accumulation N

outflow 1

outflow 3

outflow n

step 1 to 2 step 2 to 3

<processing time>

processing time

stage timen

Accumulation
Discrete outflow discrete

 

In this model outflow 1 is the outflow of a first order delay, outflow 3 a third order delay, 
outflow n and nth order delay (n is a model constant) and outflow discrete a discrete or 
infinite order delay.  The order of a delay is determined by the number of levels involved in the delay.  
For the first and third order delays this number is obvious.  For the nth order and discrete delays the 
number of levels is hidden in the internal structures used to compute the equations.   

Now look at the behavior of this model when n is 12: 

Delay Comparison n=12
100

0
0 10 20 30 40 50 60 70 80 90 100

Time (Hour)
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and when n is 100 

Delay Comparison n=100
100

0
0 10 20 30 40 50 60 70 80 90 100

Time (Hour)
 

It is useful to experiment with this model, though it does become slow to simulate with large values for 
n.  The key thing to observe is that as n increases we get closer and closer to a discrete delay, but never 
actually get there.  Even with a 100th order delay there is a noticeable difference, though if you 
compare Accumulation N and Accumulation Discrete they are not much different. 

As a note, for the discrete delay the number of levels is not really infinite, it is actually equal to 
processing time/TIME STEP.  The output of the high order delay functions, such as DELAY
FIXED and DELAY N, are held constant across each TIME STEP.  This allows alternative integration 
techniques to be mixed with discrete delays in a sensible manner.   

Material and Information Delays 

There are three basic discrete delay functions: DELAY FIXED, DELAY MATERIAL and DELAY 
INFORMATION.  The first requires a fixed delay time and, with a fixed delay time all the functions 
behave the same. It is only when the delay time changes over time that differences emerge. 

Material Delays including, DELAY MATERIAL, DELAY1, DELAY3 and DELAY N all have the 
property that they preserve quantities.  That is, the accumulation of all the input is matched to the 
accumulation of all the output.  This means when the delay time decreases, the amount of output will 
increase and vice versa.   

Information Delays including DELAY INFORMATION, SMOOTH, SMOOTH3 and SMOOTH N all 
preserve the range of the input.  That is, these functions will never return a value bigger than the 
biggest input value or smaller than the smallest input value no matter what happens to the delay time.  
This is completely appropriate for situations where the delay is being used to slow a signal (for 
example from price to target production) to account for the delays in processing 
information.  If you were to formulate expected price using a material delay and the 
perception time decreased it would cause an increase in expected price even if price 
were constant.  

The model delay1 demonstrates these three functions and how they change in response to changing 
delay time.   
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pulse train for 20 every
100 starting at 50

delay time with
changing values<Time>

delay fixed of input

delay material of
input

delay information
of input  

In this model the delay time is set up to highlight these difference.  From time 50 to 100 it is constant 
and all the functions do the same thing: 

Material and Information Delays
2 Widget/Month

50 Month

0 Widget/Month
0 Month

40 48 56 64 72 80 88 96 104 112 120
Time (Month)

Input Widget/Month
Delay Fixed Widget/Month
Delay Material Widget/Month
Delay Information Widget/Month
Delay Time Month

 
Then from Time 150 to 200 it is constant at a different value: 
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Material and Information Delays
2 Widget/Month

50 Month

0 Widget/Month
0 Month

140 148 156 164 172 180 188 196 204 212 220
Time (Month)

Input Widget/Month
Delay Fixed Widget/Month
Delay Material Widget/Month
Delay Information Widget/Month
Delay Time Month

 
The DELAY FIXED function uses the delay time that it initially had (30) while the other two use the 
changed delay time of 20.  No matter what happens to the delay time the DELAY FIXED function will 
always use its initial value.  The fixed delay is dropped in the following examples. 

If the delay time decreases over time we get 
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Material and Information Delays
2 Widget/Month

50 Month

0 Widget/Month
0 Month

240 248 256 264 272 280 288 296 304 312 320
Time (Month)

Input Widget/Month
Delay Material Widget/Month
Delay Information Widget/Month
Delay Time Month

 
The information delay has a constant output, but for a shorter duration.  The material delay has the 
same duration, but throws out some additional material on several occasions so that the total output is 
the same as the total input (20 Widgets). 

If the decrease in delay time is more sudden we get: 
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Material and Information Delays
2 Widget/Month

50 Month

0 Widget/Month
0 Month

340 348 356 364 372 380 388 396 404 412 420
Time (Month)

Input Widget/Month
Delay Material Widget/Month
Delay Information Widget/Month
Delay Time Month

 
Here the widgets in the material delay actually pass those put into the delay earlier and come out first.  
With the information delay, on the other hand, that information is treated as obsolete and discarded. 

Finally when the delay time is increasing: 
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Material and Information Delays
2 Widget/Month

50 Month

0 Widget/Month
0 Month

440 448 456 464 472 480 488 496 504 512 520
Time (Month)

Input Widget/Month
Delay Material Widget/Month
Delay Information Widget/Month
Delay Time Month

 
The duration of output is increased.  With the material delay this means that at two times nothing 
comes out while the information delay simply holds constant at 1 widget/month. 

A note about material passing other material.  If you do not want this to happen you can use the 
DELAY CONVEYOR function.  See the discussion of this below. 

Conveyors 

The DELAY CONVEYOR function allows you to introduce a delay process that is analogous to 
putting material on a conveyor and then possibly speeding up and slowing down that conveyor.  The 
DELAY CONVEYOR function has the additional capability of draining the elements on the conveyor 
which breaks the analogy somewhat but can be quite useful. 

If the DELAY CONVEYOR function is used with a fixed delay time and no leakage than it will 
behave just as the DELAY MATERIAL (or DELAY FIXED) function does.  It can be useful to do this 
if you want to specify the exact distribution of material within the delay process when it is starting. 

When the delay time changes the behavior of DELAY CONVEYOR is much more continuous then 
DELAY MATERIAL.  The model delay2.mdl provides a comparison of these two functions for 
different profiles of delay time change. For example if the delay time is decreasing you will see the 
following comparison: 
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Material and Conveyor Delays
2 Widget/Month

50 Month

0 Widget/Month
0 Month

240 248 256 264 272 280 288 296 304 312 320
Time (Month)

Input Widget/Month
Delay Material Widget/Month
Delay Conveyor Widget/Month
Delay Time Month

 
First, we don’t get any of the doubling up, but instead a higher average value.  Second, the conveyor 
finishes earlier because the decreasing conveyance time influences material that is already in the 
conveyor but not influence the DELAY MATERIAL function. 

Initialization of Conveyors 
In order to initialize a conveyor you provide a profile of the material in the conveyor to Vensim.  This 
profile shows how material will come out of the conveyor.  Vensim automatically scales both the 
domain and range of the profile so that the total amount of material and the total initial conveyance 
time matches what is specified.  The model convey1.mdl demonstrates this.  For example using the 
Lookup: 
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To initialize the DELAY CONVEYOR function would give the output (the input is zero so only initial 
material is ever output) 

simple profile out

8

0
0 5 10 15 20 25

Time (Month)

simple profile out : Current Dmnl
 

The total amount of stuff and the time over which the output occurs are determined by other 
arguments, but the shape is given by the Lookup.  This makes it convenient to setup an approximate 
profiles, and this is usually all that is needed. 

If you want to specify exactly what will come out at each time period you will need to use a more 
elaborate Lookup.  For example using the lookup: 
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With an initial stock of 100 and delay time of 10 will give the output for detailed profile out
of . 

Time 0 1 2 3 4 5 6 7 8 9
10

5 10 20 10 15 20 10 5 5e-6 5 0

In this case is you were to change either the total stock or, more importantly, the delay time these exact 
numbers would not longer hold.  Notice also the small roundoff error that occurs at time 8.  Such 
noninteger results are to be expected when using DELAY_CONVEYOR. 

Material in Conveyors 
If you are using conveyors without drainage then the amount of material in the conveyor is simply 
determined by the structure (convey2.mdl) : 

Material In
Conveyorinflow outflow using DELAY

CONVEYOR

conveyance time

initial material initial profile

  
Here initial causes are displayed for clarity.  

If there is leakage, however, a somewhat different structure is necessary.  The leakage that occurs 
depends not only on the material currently in the conveyor but also on material that will be coming into 
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the conveyor.  Stated differently, if you put something on the conveyor at time 0, then by time 1 it will 
already have done some leaking.   

This more complete structure is in convey3.mdl and looks like: 

LeakingMaterial InConveyorinflow outflow using DELAY
CONVEYOR

conveyance time

initial material initial profile

leakage

decay rate

<TIME STEP>
 

And the equation for leakage is: 

leakage= (Leaking Material In Conveyor +
(inflow-outflow using DELAY CONVEYOR)*TIME STEP)*
decay rate

The middle term in this equation is the one that is used to correct for the looking ahead issue.  It is a 
relatively small error, and one that is made smaller still then TIME STEP is small.  It is often most 
sensible to simply ignore this and use the simpler formulation: 

leakage= Leaking Material In Conveyor* decay rate

This formulation will cause a small error that is not important in most settings.  The error does tend to 
accumulate at a positive rate (because the cumulative is less than cumulative inflow when there is 
leakage). 

Population Example with Conveyors 
One common situation where you might want to include some discrete logic in an otherwise 
continuous model would be population dynamics.  Using cohorts is a standard approach to doing this 
but something like (convey4a.mdl) 

Young Young
Adults

NonReproducingAdultsbirths maturing aging dying
young
deaths

young
adult

deaths

first 16 years
next 20 years remaining lifetime

fractional young
mortality

fractional young
adult mortality

young adult
fertility
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If the above model is formulated with the obvious equations such as 

Maturing = young/first 16 years

Then, because of the nature of exponential decay, an increase in births at time 0 will lead to more 
young adults a year later.  To overcome this we can reformulate with conveyor delays as 
(convey4.mdl). 

Young Young
Adults

NonReproducingAdultsbirths maturing aging dying
young
deaths

young
adult

deaths

first 16 years
next 20 years remaining lifetime

fractional young
mortality

fractional young
adult mortality

young adult
fertility

flat

 

This is almost the same except that maturing and aging are being computed using DELAY 
CONVEYOR.  The behavior, with the same set of parameters, is significantly different: 

Young Adults

10,000

5,000

0
0 20 40 60 80 100 120 140 160 180 200

Time (YEar)

Young Adults : convey4a Person
Young Adults : convey4 Person

 

Queues 

A Queue is simply a place where you put things and then take them away.  The most common example 
of a queue is a line that you have to wait in, and such a queue is called a FIFO queue which means first 
in first out (the first person to arrive is the first person served).  Vensim has some functions that make 
it easier to deal with keeping track of things in FIFO queues. 

The QUEUE functions in Vensim all have two parts.  First these is a special level that, like a regular 
level, allows you to accumulate things, but keeping track of things by when they arrive and exit rather 
than lumping them together into one number.  For example suppose you are looking at order 
processing (queue1.mdl): 
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Work In
Progressnew orders shipped orders

processing
capacityminimum

processing time

average cycle time  
This is a traditional continuous approach to representing this and does not make use of any queues.  
The equation for average cycle time is 

average cycle time=ZIDZ(Work In Progress,shipped orders)

Compare this to a formulation using queues: 

Work In
Progressnew orders shipped orders

processing
capacityminimum

processing time

average cycle time

flat
<TIME STEP>

 

The diagram is actually nearly the same, except for the Lookup called flat and the dropping of the 
arrow from shipped orders to average cycle time.  The changed equations are: 
Work In Progress= QUEUE FIFO( new orders, shipped orders,

flat, 100, 3 )
Units: Widget

shipped orders= MIN(processing capacity,
QUEUE AGE IN RANGE(Work In Progress,

minimum processing time, 1e+009)/TIME STEP)
Units: Widget/Day

average cycle time=QUEUE AGE AVERAGE(Work In Progress, 0)
Units: Day

If you compare simulations of these two models you will see that most variables behave the same with 
the exception of average cycle time.   
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average cycle time

40

20

0
0 25 50 75 100 125 150 175 200 225 250

Time (Day)

average cycle time : queue2 Day
average cycle time : queue1 Day

 
In the continuous formulation average cycle time increases from 2 to 32 in 30 days.  That could only 
be true if nothing were being produced and all the orders were place at time 20.  The formulation using 
QUEUE provides a more accurate answer. 

In general the most value of the QUEUE functions comes because they give you the ability to get 
accurate cycle time and performance measurements. 

QUEUES with Attributes 
In addition to keeping track of how long something has waited in a queue, it is often useful to 
understand the distribution of attributes within the queue.  In discrete event simulation the approach is 
to take individual entities and track them as they function within a system.  Sometimes it makes sense 
to go to that level of detail using subscripts, but sometimes something a little bit less detailed is called 
for.  Using queues with attributes allows you to get to somewhat more detail without the full 
machinery of subscripts. 

As an example consider keeping track of the gas mileage of different vintages of cars.  The typical 
continuous approach to this problem would be to use what is called a coflow as is shown here 
(queue3.mdl). 

current gas
mileage

Cars on the
Road

cars being junkednew cars sold

Total car
mileage

average gas
mileage

initial cars

initial average
mileage

average car life  

In a coflow the attribute is tracked in a separate level with units of measure Car*Mile/Gallon.   

The coflow operates on a negative exponential residence distribution rather than a FIFO approach.  
Formulated using FIFO queues the model would become (queue4.mdl): 
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Cars on the
Road

cars being junkednew cars sold

average gas
mileage

initial cars

initial average
mileage

average car life
flat

current gas
mileage

<TIME STEP>  

We have removed the abstract level total car mileage, and now show two flows into Cars on the
Road.  One of these flows is really the flow of an attribute, but this seems the clearest representation.  
The equation for Cars on the Road becomes: 

Cars on the Road = QUEUE FIFO ATTRIB( new cars sold,
cars being junked, current gas mileage, 0, flat, flat,
initial cars, initial average mileage, average car life)

This equation is really taking two level equations and computing them at the same time. The 
average gas mileage is now computed using the formula 

average gas mileage= 

 QUEUE ATTRIB AVERAGE(Cars on the Road, -1) 

Finally the equation for cars being junked is replaced by: 

cars being junked=QUEUE AGE IN RANGE(Cars on the Road,
average car life, 1e+009)/TIME STEP

Looking at average gas mileage we see that there is significant difference between the two models: 

average gas mileage

40

25

10
0 5 10 15 20 25

Time (Year)

average gas mileage : queue3 Mile/Gallon
average gas mileage : queue4 Mile/Gallon

 

An, of course there is a difference in Cars on the Road: 
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Cars on the Road

20 M

14 M

8 M
0 5 10 15 20 25

Time (Year)

Cars on the Road : queue3 Car
Cars on the Road : queue4 Car

 
Unlike the cycle time computation, however, one of these is not clearly more right than the other.  
Both represent approximations.  Cars are retired with neither a negative exponential distribution nor as 
a FIFO queue process.   

Batch Delays 

Most delays take some inflow, shift it in time, and smooth it out.  As we saw in the first section the 
higher order the delay the less smoothing occurs.  In some cases, however, you might want a smooth 
inflow to be broken up into batches, and this is what DELAY BATCH does. 

Consider the production of pottery in a facility with a single large kiln.  A typical continuous 
representation of this would be a structure such as (batch1.mdl): 

FormedUnfiredPotterysporadic
forming

Fired Pottery
firing

firing time

painting

Finished
Inventory

painting tme

painting capacitykiln capacity  
 

Here firing is given by the equation: 

firing= MIN(kiln capacity/firing time,
Formed Unfired Pottery/firing time)

However, if the kiln loaded, then started it is more accurate to represent the model with a batch process 
(batch2.mdl): 

FormedUnfiredPotterysporadic
forming

Fired Pottery
firing

firing time

painting

Finished
Inventory

kiln capacity

painting tme

painting capacity
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Now the equation for firing is: 

firing= DELAY BATCH(sporadic forming, kiln capacity,
firing time, 0, 0, 0)

The final output is much more episodic, though not too much different: 

Finished Inventory

400

200

0
0 8 16 24 32 40 48 56 64 72 80

Time (Day)

Finished Inventory : batch1 Pot
Finished Inventory : batch2 Pot

 
but there is a much bigger variation in the amount of fired pottery and consequently in the level of 
painting activity. 

Fired Pottery

60

30

0
0 8 16 24 32 40 48 56 64 72 80

Time (Day)

Fired Pottery : batch1 Pot
Fired Pottery : batch2 Pot
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painting

20

10

0
0 8 16 24 32 40 48 56 64 72 80

Time (Day)

painting : batch1 Pot/Day
painting : batch2 Pot/Day

 
In situations where real activities are episodic and the capacity constraints tend to be limiting during 
those episodes using the DELAY BATCH function can give more accurate results. 
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10 Molecules and Other Resources 

Molecules are small pieces of structure that repeat themselves again and again.  The have been around 
a long time, but were formalized by Jim Hines in the 1990s.  Basically Jim posed the question "why 
are experienced modelers so much faster at developing models than beginners?"  The answer he came 
up with was that experienced modelers have building block structures stored in their heads that make it 
much easier to formulate most equations.  He called these elements of structure Molecules. 

The molecules themselves are not part of Vensim.  What Vensim provides is a mechanism to open and 
review the molecules.  You can also, if you wish, extend or even replace the molecules with your own.   

Getting and using the Molecules 

The molecules are available from our website http://www.vensim.com/molecule.html.  They are 
supplied free of charge and you are welcome to make use of them in your models with or without 
attribution.  There is, of course, a prohibition on using them to create a conceptually similar resource 
for commercial purposes. 

To install the molecules just download and run the installer.  After you have installed them you can 
access them using the Windows>Molecules menu item.  The first time you do this you may be asked 
for to location. 

 
Just navigate to the place you installed them (normally c:\program files\vensim\molecule\)and select 
molecule.mdl.  After that when you ask for the molecules you should see the molecule window: 
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Click on one of the molecule names to open it.  For example the Traditional Coflow 

Characteristic

Fundamental
quantityinflow offundamentalquantity

outflow offundamentalquantity

addl
characteristic

decrease of
characteristic

avg
characteristic

characteristic
of new stuff

"Traditional coflow"

Hines 1995 
The molecules are complete little models, but you can’t simulate them from the molecule window.  
You can, however, peek at the equations by holding down the Ctrl+Shift keys and clicking on the 
variables.  You can copy and paste them too other places. 

From our experience with molecules there are most useful for study.  Why you can copy and paste 
them the terminology and units all need to be changed anyway and this doesn’t really save much time.  
In addition, it is often appropriate to make small changes to the molecules to adapt them to new 
situations. 
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Extending the Molecules 

If you open the model molecule.mdl in as a regular model you will be able to edit the different 
equations.  If you look at the equation for Trad Coflow you will see that is has the comment: 

#Tcoflow.mdl# 

If you want to add molecules to the list just put them in the model molecule.mdl and then reference 
their names as shown.  It is also permissible to nest definitions of molecules in this manner. 
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Appendix A — Models that Come with Vensim 

Vensim ships with a number of different models.  Many of the models are described in this modeling 
guide, and many in the User’s Guide.  There are also a number of models that are not described in the 
documentation.  Here we outline the location and naming conventions for the documented models and 
describe a number of other models that come with Vensim. 

Modeling Guide Models 

The Modeling Guide models will normally install into the mguide subdirectory of the models 
subdirectory of Vensim.  Normally the full path for this directory if c:\Program 
Files\Vensim\models\mguide.  When you install Vensim you have the option to install these models 
into a different drive or directory.  If you have done this they will be in a different location. 

Under the mguide directory there are subdirectories for each chapter in this guide.  The directories are 
numbered with the Chapter number, followed by a brief shorthand for what the model or models are 
about.  The directories are: 

• 1Fundam - the fundamental structure examples from Chapter 1. 

• 2WFINV - the workforce-inventory example from Chapter 2. 

• 3PROJ - the project models developed in Chapter 3. 

• 4GROW - models dealing with growth and diffusion discussed in Chapter 4. 

• 5cap - models dealing with capacity adjustment in a growing market discussed in Chapter 5. 

• 6comp - models dealing with competitive dynamics discussed in Chapter 6.  These models make 
use of subscripts. 

• 7fin - models of financial variables linked to the emerging market model discussed in Chapter 7. 

• 8osc - other examples of oscillating structures.  A pendulum model and a model of a furnace 
discussed in Chapter 8. 

• 9discret models incorporating discrete functions detailed in Chapter 9. 

The names of the individual models are mentioned in their respective chapters. 

User’s Guide Models 

The User’s Guide models will normally install into the guide subdirectory of the models subdirectory 
of Vensim.  Normally the full path for this directory if c:\Program Files\Vensim\models\guide.  When 
you install Vensim you have the option to install these models into a different drive or directory.  If 
you have done this they will be in a different location. 

Under the guide directory there are subdirectories for each chapter in the User’s Guide.  The 
directories are named Chap01, Chap02 and so on.  The User’s Guide gives details on the model names.  
Note that Chap18 has two subdirectories — one for calibration and one for policy optimization. 

Many chapters provide starter models for you to work from, and these are located in each Chapter 
directory (Chap01, Chap02 etc).  User’s Guide models that are in complete form are stored in a 
\complete subdirectory of each Chapter. 
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Sample Models 

The Sample models will normally install into the sample subdirectory of the models subdirectory of 
Vensim.  Normally the full path for this directory if c:\Program Files\Vensim\models\sample.  When 
you install Vensim you have the option to install these models into a different drive or directory.  If 
you have done this they will be in a different location. 

We give a very brief description of what the models are and when appropriate an indication of how 
they relate to the Vensim documentation.  The list is arranged alphabetically by directory.   

intro.mdl 
This is the only model in the sample directory itself.  It is closely related to the workforce inventory 
model described in Chapter 2.  In this model there is a fixed workforce and a loop through overtime, 
morale and productivity that causes the model to oscillate. 

bpr 
The bpr subdirectories contains several models related to business process engineering.   

BPR0.vmf 
This is a simple word an arrow description of a business process.  This model cannot be simulated.  
There is no feedback in this model. 

BPR1.vmf 
This model presents programming style flow diagram that outlines a business process.  The model 
cannot be simulated but demonstrates the flexibility of sketches built in Vensim. 

BPR2.vmf 
This is a mechanical simulation model of a business process.  This model has only limited feedback in 
the form of stopping processing when there is no work to do.  It is very similar to the first project 
model developed in Chapter 3. 

BPR3.vmf 
This model has the same basic physics as bpr2.vmf but uses feedback policies to manage the capacity 
allocations throughout.  It can generate oscillatory behavior just like the workforce inventory model of 
Chapter 2. 

Extra 

age.mdl 
A model about populations aging using aging cohorts.   

agechain.mdl 
A similar model to age.mdl but using chained stocks to achieve the aging. 

ball.mdl 
This model simulates a bouncing ball as it impacts the ground and uses two different time steps 
depending on its position. 

BURNOUT.mdl 
This is a worker burnout model written by Jack Homer and published in The System Dynamics Review 
Volume 1, Number 1, 1985, Pages 42-62. 
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caffeine.mdl 
This model shows the effect of caffeine on the central nervous system through effects on drowsiness. 

commod.mdl 
A model of the Hog market commodities trading, based on the real market originally created by Denis 
Meadows. 

compete1.mdl 
A simple price/inventory stock model. 

cool.mdl 
Model of a system cooling (cup of coffee). 

corpgrth.mdl 
Jay Forrester's simple implementation of a corporate growth model.  As featured in Principles of 
Systems, by Jay Forrester (Pegasus). 

eit.mdl 
Easter Island tree decimation by the inhabitants of Easter Island hundreds of years ago.  Extremely 
simple model. 

epidemic.mdl 
The classic Bass diffusion model of the spread of an epidemic. 

gravity.mdl 
Gravitational attraction of two massive bodies. 

nephron5.mdl 
This is a model of a rats kidney.  It demonstrates some fast/slow dynamics and uses FIND ZERO 
function to solve them. See Chapter 8 of the Reference Manual.  It is based on the work of Erik 
Mosekilde. 

Nep4simul.mdl 
The same model using the SIMULTANEOUS function as an alternative. 

POPGAME.mdl 
This is a simple population model configured to be used in gaming.  It is essentially the same as the 
model developed in Chapter 6 of the Tutorial. 

poppyr.mdl 
This model features a large subscripted base of ages in a population. 

PROCRAST.mdl 
This is a simple model of the procrastination process.  It is closely related to the project models 
discussed in Chapter 3. 

PROJ.mdl 
This is a simple project model and is very nearly the same as that developed in Introduction to System 
Dynamics Modeling with DYNAMO,   by G.P. Richardson and A.L. Pugh (The MIT Press, Cambridge, 
MA, 1981) available from Pegasus Communications. 
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rabfox.mdl 
The rabbit model extended to a predator/prey system with foxes. 

snowball.mdl 
Simple exponential growth in a snowball. 

speed.mdl 
Simple goal seeking with negative feedback to attain a particular speed. 

TUBS.mdl† 
This is a simple model of water flow that demonstrates a number of useful subscripting tricks. 

world.mdl 
This is the model presented in World Dynamics by Jay W. Forrester (The MIT Press, Cambridge, MA, 
1971;  second edition, 1973). 

finance (finance.vmf) 
This is a financial model that is attached to a emerging market model.  It is closely related to the 
financial modeling discussed in Chapter 7. 

kalman (wfkal.mdl) 
This is a version of the workforce inventory model developed in Chapter 2 that has been modified to 
demonstrate the use of Kaman Filtering.  The use of this model is discussed in Chapter 10 of the 
Reference Manual. 

maint1 (maint1.vmf) 
This model is a simplified look at the proactive maintenance problem.  It focuses on the transition from 
a reactive maintenance strategy to a proactive strategy looking at material consumption and labor 
requirements. 

market (market.vmf) 
This is a model of market growth in a market for which sales representatives are fundamental to 
achieving this growth. 

mproject (mproj3.vmf†) 
This is a multistage model of projects.  It is related to the project models in Chapter 3 and also the 
multistage project models discussed in Chapter 13 of the Tutorial. 

urban (urban.vmf) 
This is the model of urban development and decay presented in Urban Dynamics   by J.W. Forrester 
(The MIT Press, Cambridge, MA, 1969) available from Pegasus Communications. 

Note that the Urban model that shipped with Version 4 of Vensim had a transcription error in it, so be 
sure to update this model if you want to use it. 

wrld3-91 (wrld3-91.vmf) 
This is an updated version of the model that was used for the book The Limits to Growth by D.H. 
Meadows et al (Universe Books, New York, 1972).  The model was updated for Beyond the Limits: 
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confronting global collapse, envisioning a sustainable future by D.H. Meadows et al (Chelsea Green 
Publishing Company, Post Mills, VT, 1992). 
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